GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    [Berlin] : [Technische Universität Berlin, Fachgebiet "Energieversorgungsnetze und Integration erneuerbarer Energien (SENSE)"]
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (97 Seiten, 6,38 MB) , Illustrationen, Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMWi 03ET7510A. - Verbund-Nummer 01132606 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    La Vergne :Royal Society of Chemistry, The,
    Keywords: Carbohydrates-Biotechnology. ; Electronic books.
    Description / Table of Contents: Synthetic Glycomes aims to provide a comprehensive review of the current state of the synthetic glycome, synthetic strategies toward generating glycans with comprehensive structures, as well as the glycoarrays to unveil the glycan functions.
    Type of Medium: Online Resource
    Pages: 1 online resource (487 pages)
    Edition: 1st ed.
    ISBN: 9781788017770
    Series Statement: Issn Series
    DDC: 572.56
    Language: English
    Note: Cover -- Synthetic Glycomes -- Preface -- Contents -- Chapter 1 - Introduction: Glycome and theGlyco-toolbox -- 1.1 Introduction -- 1.2 Diversity of Glycans -- 1.3 Limited Glycan Backbone Structures -- 1.4 Access -- 1.5 Application -- 1.6 Conclusion -- References -- Chapter 2 - Methodologies in Chemical Syntheses of Carbohydrates -- 2.1 Introduction -- 2.2 Before Glycosylation -- 2.2.1 Protecting Groups -- 2.2.2 De Novo Syntheses of Carbohydrates -- 2.3 Amidst Glycosylation -- 2.3.1 Reactivity -- 2.3.2 Stereochemistry -- 2.4 Applications Beyond Glycosylation -- 2.4.1 Oligosaccharides and Polysaccharides -- 2.4.2 Glycoconjugates -- 2.4.3 Natural Products -- 2.5 Conclusion -- References -- Chapter 3 - Synthetically Useful Glycosyltransferases for the Access of Mammalian Glycomes -- 3.1 Introduction -- 3.2 Glycosyltransferases (GTs) and Their Usage in Mammalian Glycan Preparation -- 3.2.1 Leloir GTs and Non-LeloirGTs -- 3.2.2 Mammalian GTs and Bacterial GTs -- 3.2.3 Wild-typeGTs and Engineered GTs -- 3.3 Synthetically Useful Glycosyltransferases -- 3.3.1 N-Acetylglucosaminyltransferases(GlcNAcTs) -- 3.3.2 Galactosyltransferases (GalTs) -- 3.3.3 Fucosyltransferases (FucTs) -- 3.3.4 Sialyltransferases (SiaTs) -- 3.3.5 N-Acetylgalactosaminyltransferases(GalNAcTs) -- 3.3.6 Glucuronosyltransferases (GlcATs) -- 3.3.7 Mannosyltransferases (ManTs) -- 3.4 Strategies in GT-catalyzed Glycan Syntheses -- 3.4.1 Direct GT-catalyzedReactions -- 3.4.2 GT-catalyzed Reaction with Sugar Nucleotide In Situ Regeneration -- 3.4.3 One-pot Multienzyme (OPME) Syntheses and Enzymatic Modular Assembly (EMA) -- 3.4.4 Whole-cellCatalysis -- 3.4.5 Living Cell Factory -- 3.5 Prospective -- References -- Chapter 4 - Chemical Synthesis of N-Glycans -- 4.1 Introduction -- 4.2 Chemical Synthesis of N-Glycans -- 4.2.1 Chemical Synthesis of Core Trisaccharide in N-Glycans. , 4.2.2 Chemical Synthesis of High-mannose Type N-Glycans -- 4.2.3 Chemical Synthesis of Hybrid Type N-Glycans -- 4.2.4 Chemical Synthesis of Complex Type N-Glycans -- 4.2.4.1 Synthesis of Symmetric Biantennary Complex Type N-Glycans -- 4.2.4.2 Synthesis of Symmetric Triantennary Complex Type N-Glycans -- 4.2.4.2.1 Synthesis of Symmetric 2,2,6-Armed Triantennary Complex Type N-Glycans -- 4.2.4.2.2 Synthesis of Symmetric 2,4,2-ArmedTriantennary Complex Type N-Glycans. -- 4.2.4.3 Synthesis of Symmetric Tetraantennary Complex Type N-Glycans -- 4.2.5 Synthesis of Neu5Ac-containing Complex Type N-Glycans -- 4.2.6 Synthesis of Asymmetric Complex Type N-Glycans -- 4.2.7 Synthesis of Bisecting Type N-Glycans -- 4.2.8 Synthesis of Core-fucosylated N-Glycans -- 4.3 Discussion -- 4.4 Summary -- References -- Chapter 5 - Chemoenzymatic Synthesis of N-Glycans -- 5.1 Introduction -- 5.2 Enzymes Employed in the Preparation of N-Glycans -- 5.2.1 Sialyltransferases -- 5.2.2 Galactosyltransferases -- 5.2.3 Fucosyltransferases -- 5.2.4 N-Acetylhexosaminyltransferases -- 5.2.5 Glycosidases -- 5.2.6 Glycosynthases -- 5.3 Enzymatic Preparation of N-Glycans -- 5.4 Chemoenzymatic Preparation of N-GlycanLibraries -- 5.4.1 A General Strategy for Chemoenzymatic Synthesis of Asymmetric Complex Type N-Glycans -- 5.4.2 Core Synthesis/Enzymatic Extension (CSEE) Strategy forthe Synthesis of Hybrid and Complex Type N-Glycans -- 5.4.3 Enzymatic Synthesis of Complex Type N-Glycansfrom One Chemically Prepared Precursor -- 5.5 Modular Synthesis of All Types of N-Glycans -- 5.6 Summary -- References -- Chapter 6 - Chemoenzymatic Synthesis of α-Dystroglycan O-Mannose Glycans -- 6.1 Introduction -- 6.2 Biosynthetic Pathway and Functional Roles of O-Mannose Glycans -- 6.2.1 Biosynthesis Pathway of O-MannosylGlycans -- 6.2.2 Dystroglycanopathies and Implicated Genes. , 6.2.3 Roles of O-Mannosylationin Tumor Metastasis -- 6.2.4 Function of Core M1 and M2 Structures -- 6.2.5 O-MannosylatedSubstrates Beyond α-DG -- 6.3 Synthesis of O-MannoseGlycans -- 6.3.1 Chemical or Chemoenzymatic Synthesis of Core M1 Structures -- 6.3.2 Chemical or Chemoenzymatic Synthesis of Core M2 O-Mannose Glycans -- 6.3.3 Chemical Synthesis of Phosphorylated Core M3 Trisaccharide -- 6.4 Conclusion -- Abbreviations -- Acknowledgement -- References -- Chapter 7 - Chemical Synthesis of Glycopeptides and Glycoproteins -- 7.1 Introduction -- 7.2 Synthesis of Glycopeptide -- 7.2.1 Synthesis of Polypeptide Chain -- 7.2.2 Synthesis of PSGL-1 -- 7.2.3 Synthesis of CD52 -- 7.3 Ligation Method -- 7.3.1 Basic Strategies -- 7.3.2 Glycopeptide Thioester Synthesis -- 7.4 Synthesis of O-linkedGlycoproteins -- 7.4.1 Synthesis of Antifreeze Glycoprotein -- 7.4.2 Synthesis of MUC2 Model -- 7.4.3 Synthesis of Interleukin-2 -- 7.5 Synthesis of N-linkedGlycoprotein -- 7.5.1 Strategies for N-linked Glycoprotein Synthesis -- 7.5.2 Synthesis of Human Interferon-β -- 7.5.3 Synthesis of TIM-3 -- 7.5.4 Synthesis of Ig Domain of Emmprin -- 7.6 Conclusion -- References -- Chapter 8 - Synthesis of Chondroitin Sulfate Oligosaccharides and Chondroitin Sulfate Glycopeptides -- 8.1 Introduction to Chondroitin Sulfate (CS) and Chondroitin Sulfate Proteoglycan (CSPG) -- 8.2 Chemical Synthesis of CS -- 8.2.1 General Synthetic Design for Chemical Synthesis of CS -- 8.2.2 Strategies Addressing N-protective Groups -- 8.2.2.1 Azide Protective Group -- 8.2.2.2 N-AcetamideGroup -- 8.2.2.3 N-Trichloroacetamide Group -- 8.2.2.4 N-Trifluoroacetamide -- 8.2.2.5 N-Tetrachlorophthalimide Group -- 8.2.2.6 Lactose Derived CS Mimetics -- 8.2.3 Semi-synthesisof CS, Expediting Building Block Preparation Using Natural Sources -- 8.2.4 Solid Phase Synthesis of CS Oligosaccharides. , 8.2.5 Chemical Synthesis of a CS Disaccharide Library and Biotinylated CS -- 8.2.6 Chemical Synthesis of Heterologous Sulfated CS Oligosaccharides -- 8.2.7 Chemical Synthesis of CS Oligosaccharides with Linkage Region -- 8.3 Chemoenzymatic Synthesis of CS Oligosaccharides -- 8.4 Chemical Synthesis of CS Glycopolymers and Glycoconjugates -- 8.5 Synthesis of CS Glycopeptide -- 8.6 Conclusions -- Abbreviations -- Acknowledgement -- References -- Chapter 9 - Chemoenzymatic Synthesis of Heparan Sulfate and Heparin -- 9.1 Introduction -- 9.1.1 Heparan Sulfate -- 9.1.2 Heparin -- 9.1.3 Chemoenzymatic Synthesis of HS and Heparin -- 9.2 Key Techniques of Synthesis -- 9.2.1 Design of Sugar Nucleotides for the Chemoenzymatic Synthesis of HS -- 9.2.2 Sequences of Enzymatic Modifications for the Synthesis of Different Oligosaccharides -- 9.3.1 Synthesis of HS Oligosaccharide Library and a New Antithrombin-binding Octasaccharide -- 9.3.2 HS Microarray to Target HS and Protein Interaction -- 9.3.3 Design of Heparin Drugs -- 9.3.4 Scale-up Synthesis of HS 12-mer -- 9.4 Conclusion -- References -- Chapter 10 - Synthesis of Glycosphingolipids (GSLs) -- 10.1 Introduction -- 10.2 Chemical Strategies for Synthesizing Glycosphingolipids -- 10.2.1 Synthesis Using Glycosyl Trichloroacetimidate Donors -- 10.2.2 Synthesis with Glycosyl N-Phenyl Trifluoroacetimidates -- 10.2.3 Synthesis Using Glycosyl Fluoride Donors -- 10.2.4 Synthesis Using Koenigs-Knorr Glycosylation Reactions -- 10.2.5 Synthesis Using Thioglycoside Glycosyl Donors -- 10.2.6 Synthesis Using α-GlycosylIodide Donors -- 10.2.7 Synthesis Using Glycosyl Mesylate Donors -- 10.2.8 Synthesis Using Glycal Donors -- 10.2.9 Synthesis of α-Galactosylceramide Analogs from Naturally Configured α-Galactosides -- 10.3 Chemoenzymatic Synthesis of GSLs -- 10.3.1 Endoglycoceramidase-derived Glycosynthase-catalyzed Synthesis. , 10.3.2 Enzymatic Synthesis of Gb3 and iGb3 Using Lactosyl Ceramide as Acceptor Substrate -- 10.3.3 Enzymatic Assembly of Oligosaccharides Followed by Chemical Glycosylation -- 10.3.4 Enzymatic Sialylation of Glycolipids -- 10.3.5 One-pot Multienzyme (OPME) Chemoenzymatic Strategies -- 10.4 Conclusion -- Acknowledgement -- References -- Chapter 11 - Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides (HMOS) -- 11.1 Introduction -- 11.2 Bacterial and Mammalian Glycosyltransferases (GTs) that Have Been Used for the Synthesis of HMOS -- 11.3 Synthesis of HMOS via One-pot Multienzyme(OPME) Approaches -- 11.3.1 One-potMultienzyme (OPME) Glycosylation Systems -- 11.3.2 OPME Synthesis of Core Glycans LNTri II (Lc3) and LNnT -- 11.3.3 OPME Enzymatic Synthesis of Fucose-containing HMOS -- 11.3.3.1 OPME Synthesis of LNFP I -- 11.3.3.2 OPME Synthesis of LNFP III -- 11.3.3.3 OPME Synthesis of 3- FL, LNFP III, LNDFH II, and LNDFH III -- 11.3.4 OPME Synthesis of Sialylated HMOS -- 11.3.4.1 OPME Synthesis of 3′-SLand 6′-SL -- 11.3.4.2 OPME Synthesis of LST a, LST d, Sialylated LNFP III -- 11.3.4.3 OPME Synthesis of LSTc -- 11.3.4.4 OPME Synthesis of Disialylated HMOS -- 11.4 Glycosyltransferase-catalyzed Enzymatic Synthesis of HMOS -- 11.5 Enzymatic Synthesis of HMOS Using Transglycosidases, Glycosidases and Mutants -- 11.6 Chemoenzymatic Synthesis of HMOS -- 11.7 Whole-cell Production and Fermentation of Engineered E. coli Cells -- 11.8 Conclusion -- Acknowledgement -- References -- Chapter 12 - Synthesis of Marine Polysaccharides/Oligosaccharides and Their Derivatives -- 12.1 Introduction -- 12.2 Synthesis of Marine Polysaccharides -- 12.2.1 Biosynthesis of Marine Polysaccharides -- 12.2.2 Semi-synthesisof Marine-derived Polysaccharides -- 12.2.3 Synthesis of Glycopolymers and Glycoclusters to Mimic Natural Marine Polysaccharides. , 12.2.4 Synthesis and Modification of Marine Polysaccharide Derivatives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Building construction. ; Sustainable architecture. ; Air pollution. ; Renewable energy resources. ; Energy storage. ; Environmental monitoring.
    Description / Table of Contents: Thermal environment -- Thermal comfort -- Indoor air quality -- Healthy buildings -- HVAC and systems -- HVAC components -- Heat pump and refrigeration systems -- HVAC&R operation and management -- HVAC&R control systems -- Energy in buildings -- Building simulation -- Building physics -- District energy system -- Renewable energy.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXIX, 1561 p. 865 illus., 694 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9789811395284
    Series Statement: Environmental Engineering
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Building construction. ; Sustainable architecture. ; Air pollution. ; Renewable energy resources. ; Energy storage. ; Environmental monitoring.
    Description / Table of Contents: Thermal environment -- Thermal comfort -- Indoor air quality -- Healthy buildings -- HVAC and systems -- HVAC components -- Heat pump and refrigeration systems -- HVAC&R operation and management -- HVAC&R control systems -- Energy in buildings -- Building simulation -- Building physics -- District energy system -- Renewable energy.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXIV, 961 p. 558 illus., 410 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9789811395246
    Series Statement: Environmental Engineering
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge :Royal Society of Chemistry,
    Keywords: Glycoproteins. ; Electronic books.
    Description / Table of Contents: This book describes the development and application of glycoprotein and glycan synthesis technologies as tools for understanding and manipulating protein glycosylation.
    Type of Medium: Online Resource
    Pages: 1 online resource (439 pages)
    Edition: 1st ed.
    ISBN: 9781788011228
    Series Statement: ISSN
    DDC: 572.67999999999995
    Language: English
    Note: Intro -- Title -- Copyright -- Preface -- Contents -- CHAPTER 1 Introduction: General Aspects of the Chemical Biology of Glycoproteins -- 1.1 Introduction -- 1.1.1 Complexity of Protein Glycosylation -- 1.1.2 Strategies and Methods to Study Protein Glycosylation -- 1.2 Chemical Biology of Glycoproteins -- 1.2.1 Types of Protein Glycosylation -- 1.2.2 Biosynthesis of Glycoproteins -- 1.2.3 Structural and Functional Consequences of Protein Glycosylation -- 1.2.4 Methods to Prepare Homogeneous Glycopeptides and Glycoproteins -- 1.2.5 Chemical Glycobiology and Applications -- 1.3 Conclusion -- References -- CHAPTER 2 Chemical Biology of Protein N-Glycosylation -- 2.1 Introduction -- 2.2 Biosynthesis and Intracellular Functions of N-Glycans of Glycoproteins -- 2.3 Inhibitors of Glycan-Processing Enzymes for Controlling Protein N-Glycosylation -- 2.4 Global Metabolic Enzyme Inhibitors for Perturbing Protein N-Glycosylation -- 2.5 Metabolic Glycoengineering of Cell-Surface Glycoproteins -- 2.6 Chemoenzymatic Synthesis and Glycosylation Remodeling Toward Homogeneous N-Glycoproteins -- 2.6.1 Generation of Novel ENGase-Based Glycosynthases for N-Glycosylation Remodeling and N-Glycoprotein Synthesis -- 2.6.2 Chemoenzymatic Fc Glycan Remodeling of Therapeutic Monoclonal Antibodies -- 2.6.3 Combined E. coli Expression and Chemoenzymatic Glycan Remodeling to Produce Humanized N-Glycoproteins -- 2.7 Conclusion -- Acknowledgements -- References -- CHAPTER 3 Chemical Biology of Protein O-Glycosylation -- 3.1 Introduction -- 3.2 Biosynthesis of O-Glycoproteins -- 3.2.1 α-O-GalNAc -- 3.2.2 α-O-Man -- 3.2.3 α-O-Fuc -- 3.2.4 β-O-Glc -- 3.2.5 β-O-GlcNAc -- 3.3 Chemical Biology in Studying the Structural and Functional Consequences of Protein O-Glycosylation -- 3.3.1 α-O-GalNAc -- 3.3.1.1 Substrate Preferences of ppGalNAcTs. , 3.3.1.2 Structural Effects of O-GalNAc Glycosylation -- 3.3.1.3 Functional Effects of O-GalNAc Glycosylation -- 3.3.2 α-O-Man -- 3.3.2.1 Biosynthetic Pathway of O-Man Glycans -- 3.3.2.2 Biophysical and Biological Effects of O-Mannosylation -- 3.3.3 α-O-Fuc -- 3.3.4 β-O-Glc -- 3.3.5 β-O-GlcNAc -- 3.4 Chemical Biology in Studying the Composition of Mixtures of O-Glycoproteins -- 3.4.1 Glycoprotein Purification and Enrichment -- 3.4.2 Glycoprotein Digestion and Glycopeptide Separation -- 3.4.3 Glycopeptide Analysis -- 3.4.4 Importance of Synthetic Glycopeptides in Protein Glycosylation Analysis -- 3.5 Conclusion -- References -- CHAPTER 4 Chemical Biology of O-GlcNAc Glycosylation -- 4.1 Introduction -- 4.2 Chemical Blockade of O-GlcNAc Addition -- 4.2.1 Inhibitors of UDP-GlcNAc Biosynthesis -- 4.2.2 Product Inhibition of OGT: UDP -- 4.2.3 Alloxan -- 4.2.4 Screening Approaches to Discover OGT Inhibitors -- 4.2.5 Substrate Mimicry Approach to Discover OGT Inhibitors -- 4.2.6 New Directions in OGT Inhibitor Development -- 4.3 Chemical Blockade of O-GlcNAc Removal: OGA Inhibitors -- 4.3.1 Streptozotocin -- 4.3.2 PUGNAc -- 4.3.3 NAG-Thiazoline -- 4.3.4 GlcNAcstatins -- 4.3.5 Thiamet-G -- 4.3.6 Other Approaches to OGA Inhibition -- 4.4 Detection of O-GlcNAcylated Substrates: Lectins and Antibodies -- 4.5 Detection of O-GlcNAcylated Substrates: Mass Spectrometry-Based Methods -- 4.5.1 Electron Transfer Dissociation MS -- 4.5.2 MS Approaches to Complement ETD -- 4.5.3 Chemical Derivatization of MS Samples for O-GlcNAc Enrichment and Detection -- 4.6 Detection of O-GlcNAcylated Substrates: A Chemoenzymatic Approach -- 4.7 Detection of O-GlcNAcylated Substrates: Metabolic Labeling Approaches -- 4.7.1 N-Azidoacetylglucosamine (GlcNAz) -- 4.7.2 N-Azidoacetylgalactosamine (GalNAz) -- 4.7.3 N-Butynyl-Glucosamine (GlcNAlk) and Other Alkynylsugars. , 4.7.4 Other Metabolic Labeling Reagents -- 4.8 Methods to Deduce the Biochemical and Cellular Functions of O-GlcNAc -- 4.8.1 Live-Cell Assays of OGT or OGA Activity -- 4.8.2 Chemical Modification and Semi-Synthesis of Model Glycoproteins and Glycopeptides -- 4.8.3 Photocrosslinking Tools to Capture O-GlcNAc-Mediated Protein-Protein Interactions -- 4.9 Conclusions and Outlook -- References -- CHAPTER 5 Chemical Synthesis and Engineering of N-Linked Glycoproteins -- 5.1 Introduction -- 5.2 Semisynthesis of N-Glycosylated Proteins -- 5.2.1 Semisynthesis of N-Glycoprotein Mimics with Unnatural Glycosyl Linkages at Cysteines -- 5.2.2 Semisynthesis of Glycoproteins with Natural N-Linkages on Asparagines -- 5.3 Total Chemical Synthesis of N-Linked Glycoproteins -- 5.3.1 Total Synthesis of N-Linked Glycoproteins Bearing N-Chitobioses -- 5.3.2 Total Synthesis of N-Linked Glycoproteins Bearing "Wild-Type" N-Glycans -- 5.3.3 Representative Synthetic Attempts Towards Producing N-Linked Glycoproteins with Multiple Disulfide Linkages -- 5.4 Application of Chemically Synthesized N-Linked Glycoproteins to Biological Processes -- 5.5 Conclusion -- References -- CHAPTER 6 Chemoenzymatic Synthesis of N-Glycans -- 6.1 Introduction -- 6.2 Chemical Synthesis of Complex N-Glycans -- 6.2.1 Assembly Strategy and Method of Glycosylation in Chemical Synthesis of N-Glycans -- 6.2.2 Total Synthesis of Complex N-Glycans by Global Glycosylation of a Core Pentasaccharide -- 6.2.3 Convergent Synthesis of Complex N-Glycans by Glycosylation of Core Trisaccharide -- 6.3 Chemoenzymatic Synthesis of Complex N-Glycans -- 6.3.1 A General Strategy for the Chemoenzymatic Synthesis of Asymmetrically Branched N-Glycans -- 6.3.1.1 Chemical Synthesis of Asymmetric N-Glycans by Orthogonal Protection Strategy -- 6.3.1.2 Enzymatic Extension to Synthesize Asymmetrically Branched N-Glycans. , 6.3.2 Core Synthesis/Enzymatic Extension (CSEE) Strategy for Efficient Synthesis of N-Glycan Libraries -- 6.3.2.1 Chemical Synthesis of N-Glycan Core Structures Through Convergent Block Coupling -- 6.3.2.2 Enzymatic Extension to Obtain a N-Glycan Library -- 6.4 Conclusion -- References -- CHAPTER 7 Towards Synthesis of Heparan Sulfate Glycopeptides and Proteoglycans -- 7.1 Structures, Biological Functions and Biosynthesis of Proteoglycans -- 7.2 Chemical Synthesis of the PG Linker-Peptide Conjugates -- 7.3 Synthesis of HS Glycopeptides -- 7.4 Conclusion and Future Outlook -- Acknowledgements -- References -- CHAPTER 8 Chemoenzymatic Synthesis of Low-Molecular-Weight Heparin and Heparan Sulfate -- 8.1 Introduction -- 8.1.1 What are Heparan Sulfate, Heparin and Heparin-Derivatives? -- 8.1.2 Why are Synthetic Heparins and Heparan Sulfates Needed? -- 8.1.3 Types of Chemoenzymatic Synthesis -- 8.2 Enzymes Required for Chemoenzymatic Synthesis -- 8.2.1 Glycosyltransferases -- 8.2.2 Sulfotransferases and C5-Epimerase -- 8.3 Building Blocks Prepared for Chemoenzymatic Synthesis -- 8.3.1 Acceptors -- 8.3.2 Donors -- 8.3.2.1 Natural UDP-Sugars -- 8.3.2.2 Unnatural UDP-Sugars -- 8.3.3 Polysaccharide and Oligosaccharide Backbone -- 8.4 Control of Product Through Sequential Enzymatic Modification -- 8.5 Novel Chemoenzymatic Synthesis -- 8.5.1 One-Pot Multienzyme System -- 8.5.2 Fluorous-Tagging Techniques -- 8.5.3 Solid-Phase Synthesis -- 8.5.4 Immobilized Enzymes -- 8.5.5 Immobilized Enzyme Cofactors -- 8.6 Conclusion and Future Perspectives -- References -- CHAPTER 9 Synthetic Studies of GPI-Anchored Peptides, Glycopeptides, and Proteins -- 9.1 Introduction -- 9.2 Biosynthesis of GPIs and GPI-Anchored Proteins -- 9.2.1 Biosynthesis of GPI Anchors -- 9.2.2 Posttranslational Attachment of GPIs to Proteins. , 9.3 Synthesis of GPI-Anchored Proteins and Glycoproteins -- 9.3.1 Chemical Total Synthesis of GPI-Anchored Peptides and Glycopeptides -- 9.3.2 Synthesis of GPI-Anchored Peptides and Proteins via NCL -- 9.3.3 Synthesis of GPI-Anchored Peptides, Glycopeptides, and Proteins via Enzymatic Ligation -- 9.4 GPI-Anchored Proteomics Studies -- 9.5 Concluding Remarks -- Acknowledgements -- References -- CHAPTER 10 Chemical Approaches to Image Protein Glycosylation -- 10.1 Background -- 10.2 Structure, Biosynthesis, and Function of Protein Glycans -- 10.2.1 N-Linked Glycans -- 10.2.2 Mucin-Type O-Linked Glycans -- 10.2.3 Sialic Acids -- 10.2.4 O-GlcNAc -- 10.3 Methods for Glycan Labeling and Imaging -- 10.3.1 Lectins and Antibodies -- 10.3.2 Metabolic Glycan Labeling -- 10.3.3 Chemoenzymatic Labeling -- 10.4 Imaging Protein Glycosylation -- 10.4.1 General Principles of the Dual-Labeling-Based Methods -- 10.4.2 FRET-Based Protein-Specific Imaging of Glycosylation -- 10.4.3 PLA-Based Protein-Specific Imaging of Glycosylation -- 10.4.4 Protein-Specific Imaging of Glycosylation Based on PEBL -- 10.4.5 Protein-Specific Imaging of Glycosylation Based on SERS -- 10.5 Conclusion and Perspective -- References -- CHAPTER 11 Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design -- 11.1 The Human Immunodeficiency Virus -- 11.1.1 Structure, Genome and Viral Lifecycle -- 11.1.2 Transmission and Pathogenesis -- 11.1.3 The Viral Envelope is the Main Target for the Immune System -- 11.1.4 Immune Response -- 11.1.5 Current Therapies and Steps towards a Vaccine -- 11.2 The Viral Envelope Spike -- 11.2.1 Biosynthesis -- 11.2.2 Structure and Function of Env -- 11.2.3 The Glycan Shield -- 11.2.4 Site-specific N-Linked Glycan Analysis -- 11.2.5 Glycans in Immune Escape -- 11.3 A Target for Broadly Neutralizing Antibodies -- 11.3.1 Sites of Vulnerability. , 11.3.2 Unusual Features of Broadly Neutralizing Antibodies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Nitric oxide. ; Nitric oxide -- Physiological effect. ; Drugs -- Design. ; Pharmaceutical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (414 pages)
    Edition: 1st ed.
    ISBN: 9783527603848
    DDC: 547.04
    Language: English
    Note: Intro -- Nitric Oxide Donors -- Contents -- Preface -- List of Contributors -- Part 1 Chemistry of NO Donors -- 1 NO and NO Donors -- 1.1 Introduction to NO Biosynthesis and NO donors -- 1.1.1 Nitric Oxide Synthases -- 1.1.2 Chemistry of Reactive Nitrogen Species -- 1.2 Classification of NO Donors -- 1.3 New Classes of NO Donors under Development -- 1.3.1 Nitroarene -- 1.3.2 Hydroxamic Acids -- 1.4 Development of NO-Drug Hybrid Molecules -- 1.4.1 Nitrate Hybrid Molecules -- 1.4.2 Furoxan Hybrid Molecules -- 1.5 New Therapeutic Applications of NO Donors -- 1.5.1 NO Donors against Cancer -- 1.5.1.1 Diazeniumdiolates (NONOates) as Promising Anticancer Drugs -- 1.5.1.2 The Synergistic Effect of NO and Anticancer Drugs -- 1.5.1.3 NO-NSAIDs as a New Generation of Anti-tumoral Agents -- 1.5.1.4 Other NO Donors with Anticancer Activity -- 1.5.2 NO against Virus -- 1.5.2.1 HIV-1 Induces NO Production -- 1.5.2.2 Antiviral and Proviral Activity of NO -- 1.5.3 Inhibition of Bone Resorption -- 1.5.4 Treatment of Diabetes -- 1.5.5 Thromboresistant Polymeric Films -- 1.5.6 Inhibition of Cysteine Proteases -- 1.6 Conclusion -- References -- 2 Organic Nitrates and Nitrites -- 2.1 Organic Nitrates -- 2.1.1 Direct Chemical Reaction between Organic Nitrates and Thiols -- 2.1.2 Glutathione-S-transferase -- 2.1.3 Cytochrome P-450-dependent Systems -- 2.1.4 Membrane-bound Enzyme of Vascular Smooth Muscle Cells -- 2.1.5 Xanthine Oxidoreductase -- 2.1.6 Mitochondrial Aldehyde Dehydrogenase -- 2.1.7 Tolerance -- 2.2 Organic Nitrites -- 2.3 Conclusions -- References -- 3 N-Nitroso Compounds -- 3.1 Introduction -- 3.2 N-Nitrosamines -- 3.2.1 Synthesis of Nitrosamines -- 3.2.2 Physical Properties and Reactions of N-Nitrosamines -- 3.2.3 Structure-Activity Relationship of N-Nitrosamines -- 3.2.4 Application of N-Nitrosamines -- 3.3 N-Hydroxy-N-nitrosoamines. , 3.3.1 Biologically Active N-Hydroxy-N-nitrosamine Compounds -- 3.3.2 Synthesis of N-Hydroxy-N-nitrosamines -- 3.3.3 Properties of N-Hydroxy-N-nitrosamines -- 3.3.4 Reactivity of N-Hydroxo-N-nitrosamines -- 3.4 N-Nitrosimines -- 3.4.1 Mechanism of Thermal Reaction of N-Nitrosoimine -- 3.4.2 Properties of N-Nitrosoimines -- 3.4.3 Synthesis of N-Nitrosoimines -- 3.5 N-Diazeniumdiolates -- 3.5.1 Mechanism of NO Release -- 3.5.2 Synthesis of N-Diazeniumdiolates -- 3.5.2.1 Ionic Diazeniumdiolates -- 3.5.2.2 O-derivatized Diazeniumdiolates -- 3.5.3 Reactions of N-Diazeniumdiolates -- 3.5.4 Clinical Applications -- 3.5.4.1 Reversal of Cerebral Vasospasm -- 3.5.4.2 Treatment of Impotency -- 3.5.4.3 Nonthrombogenic Blood-contact Surfaces -- 3.5.5 Future Directions -- References -- 4 The Role of S-Nitrosothiols in the Biological Milieu -- 4.1 Structure and Cellular Reactivity of RSNOs -- 4.1.1 RSNO Structure -- 4.1.1.1 Enzymatic Consumption of RSNOs -- 4.1.2 Formation of RSNOs in the Biological Milieu -- 4.1.2.1 Nitrite Mediated -- 4.1.2.2 NO Mediated -- 4.1.2.3 NO Oxidation Products Mediated -- 4.1.2.4 Metalloprotein Mediated -- 4.1.2.5 Transnitrosation -- 4.2 Postulated Physiological roles of RSNOs -- 4.2.1 Regulation of Blood Flow by HbSNO -- 4.2.2 Regulation of Ventilatory Response in the Brain by RSNOs -- 4.2.3 Role of RSNOs in Platelet Function -- 4.3 Conclusion -- References -- 5 Metal-NO complexes: Structures, Syntheses, Properties and NO-releasing Mechanisms -- 5.1 Iron Complexes -- 5.1.1 Nitroprusside -- 5.1.2 Iron Porphyrin Nitrosyls -- 5.1.3 Dinitrosyl Complexes (DNICs) -- 5.1.4 Iron-Sulfur Cluster Nitrosyls -- 5.2 Ruthenium Complexes -- 5.3 Other Metal Nitrosyls -- 5.4 Conclusion -- References -- 6 The NO-releasing Heterocycles -- 6.1 Heterocyclic N-oxides -- 6.1.1 Furoxans -- 6.1.1.1 General Properties -- 6.1.1.2 Synthesis. , 6.1.1.2.1 Dimerisation of nitrile oxides -- 6.1.1.2.2 Dehydrogenation of α-dioximes (glyoximes) -- 6.1.1.2.3 Action of nitrogen oxides on olefins -- 6.1.1.2.4 Other methods -- 6.1.1.3 NO-release -- 6.1.1.4 Biological Actions -- 6.1.1.4.1 Condensed furoxans -- 6.1.1.4.2 Furoxan sulfones and carbonitriles -- 6.1.1.4.3 Furoxancarboxamides -- 6.1.1.5 NO-donor Hybrid Furoxans -- 6.1.2 3,4-Dihydro-1,2-diazete 1,2-dioxides (1,2-diazetine 1,2-dioxides) -- 6.1.2.1 Generalities -- 6.1.2.2 Synthesis -- 6.1.2.3 NO-release -- 6.1.2.4 Biological Properties -- 6.1.3 Other Heterocyclic N-oxides -- 6.1.3.1 4H-pyrazol-4-one 1,2-dioxides (pyrazolone N,N-dioxides) -- 6.1.3.2 2H-1,2,3-triazole 1-oxides -- 6.1.3.3 1,2,3,4-Benzotetrazine 1,3-dioxides and 1,2,3-Benzotriazine 3-oxides -- 6.2 Mesoionic Heterocycles -- 6.2.1 Sydnonimines -- 6.2.1.1 General Properties -- 6.2.1.2 Synthesis -- 6.2.1.3 NO-release -- 6.2.1.4 Biological Properties -- 6.2.2 Mesoionic Oxatriazoles -- 6.2.2.1 Synthesis -- 6.2.2.2 NO-release -- 6.2.2.3 Biological Properties -- 6.3 Other Heterocyclic Systems -- References -- 7 C-Nitroso Compounds, Oximes, N-Hydroxyguanidines and N-Hydroxyureas -- 7.1 Introduction -- 7.2 C-Nitroso Compounds -- 7.2.1 Alkyl and Aryl C-Nitroso Compounds -- 7.2.1.1 Syntheses and Properties -- 7.2.1.2 NO-releasing Mechanisms -- 7.2.2 Acyl C-Nitroso Compounds -- 7.2.2.1 Syntheses and Properties -- 7.2.2.2 NO-releasing Mechanisms -- 7.2.2.3 Structure-Activity Relationships -- 7.3 Oximes -- 7.3.1 Syntheses and Properties -- 7.3.2 NO-releasing Mechanisms -- 7.3.3 Structure-Activity Relationships -- 7.4 N-Hydroxyguanidines -- 7.4.1 Syntheses and Properties -- 7.4.2 NO-releasing Mechanisms -- 7.4.3 Structure-Activity Relationships -- 7.5 N-Hydroxyureas -- 7.5.1 Syntheses and Properties -- 7.5.2 NO-releasing Mechanisms -- 7.5.3 Structure-Activity Relationships -- References. , Part 2 NO Donors' Applications in Biological Research -- 8 Vasodilators for Biological Research -- 8.1 NO-donor Drugs for Biological Research -- 8.2 Sodium Nitrite (NaNO(2)) -- 8.3 S-Nitrosothiols -- 8.4 Metallic Nitrosyls -- 8.5 Sodium Nitroprusside (Na(2)[Fe(CN)(5)NO] · 2H(2)O) -- 8.6 Organic Nitrates -- 8.7 Organic Nitrites -- 8.8 NONOates -- 8.9 NO Inhalation -- NO Gas as an NO Donor -- 8.10 Sydnonimines -- 8.11 Conclusion -- References -- 9 NO Donors as Antiplatelet Agents -- 9.1 Introduction -- 9.2 Molecular Mechanisms of NO-mediated Platelet Inhibition -- 9.2.1 cGMP-dependent NO Signaling Mechanisms -- 9.2.1.1 Regulation of cGMP Levels -- 9.2.1.2 Effector Sites of cGMP -- 9.2.1.3 cGMP-PK I Substrates in Platelets -- 9.2.1.3.1 Inositol triphosphate (IP(3)) receptor -- 9.2.1.3.2 Rap 1b -- 9.2.1.3.3 Vasodilator stimulated phosphoprotein (VASP) -- 9.2.1.3.4 Heat shock protein hsp27 -- 9.2.1.3.5 LASP -- 9.2.1.3.6 Thromboxane A(2) (TxA(2)) receptor -- 9.2.1.3.7 Phosphodiesterase PDE5 -- 9.2.2 cGMP-independent NO Signaling Mechanisms -- 9.3 Effects of Different Groups of NO Donors on Platelets -- 9.3.1 Diazeniumdiolates -- 9.3.1.1 DEA/NO (Sodium 2-(N,N-diethylamino)-diazenolate-2-oxide) -- 9.3.1.2 DETA NONOate ((Z)-1-[N-(2-Aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate) -- 9.3.1.3 MAHMA NONOate ((Z-1-[N-Methyl-N-[6-(N-methylammoniohexyl) amino]]diazen-1-ium-1,2-diolate) -- 9.3.2 Sodium Nitroprusside (SNP) -- 9.3.3 Molsidomine (3-Morpholino-sidnonimine -- SIN-1) -- 9.3.4 S-Nitrosothiols -- 9.3.4.1 SNAP (S-Nitroso-N-acetyl-d,1-penicillamine) -- 9.3.4.2 SNVP (S-Nitroso-N-valerylpenicillamine) -- 9.3.4.3 GSNO (S-nitroso-glutatione) -- 9.3.4.4 CysNO (S-Nitrosocysteine) -- 9.3.4.5 SNAC (S-Nitroso-N-acetyl-cysteine) -- 9.3.4.6 HomocysNO (S-Nitrosohomocysteine). , 9.3.4.7 RIG200 (N-(S-Nitroso-N-acetylpenicillamine)-2-amino-2-deoxy-1,3,4,6, tetra-O-acetyl-beta-D-glucopyranose) -- 9.3.5 Organic Nitrates -- 9.3.5.1 GTN (Glyceryl Trinitrate, Nitroglycerin, NTG) -- 9.3.6 Mesoionic Oxatriazole Derivatives -- 9.3.6.1 GEA-3162 (1,2,3,4-Oxatriazolium, 5-amino-3-(3,4-dichlorphenyl)-, cloride) -- 9.3.6.2 GEA-3175 (1,2,3, 4-Oxatriazolium, -3-(3-chloro-2-methylphenyl)-5-[[(4-methylphenyl) sulfonyl]amino]-, Hydroxide Inner Salt) -- 9.3.7 Other NO Donors -- 9.3.7.1 OXINO (Sodium trioxdinitrate or Angel's Salt) -- 9.3.7.2 B-NOD (2-Hydroxy-benzoid acid 3-nitrooxymethyl-phenyl ester) -- 9.3.8 L-Arginine (L-Arg) -- 9.4 Activators of Soluble Guanylyl Cyclase -- 9.4.1 YC-1 (3-(5´-Hydroxymethyl-2´-furyl)-1-benzyl indazole) -- 9.4.2 BAY 41-2272 (3-(4-Amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo [3,4-b]pyridine) -- 9.5 cGMP Analogs -- 9.6 Inhaled NO and Platelet Inhibition -- 9.7 Conclusion -- References -- 10 Control of NO Production -- 10.1 Introduction -- 10.2 Structure of Nitric Oxide Synthase -- 10.3 NO Formation -- 10.4 L-Arginine and L-Arginine Derivatives -- 10.4.1 Inhibitors -- 10.4.2 Substrates -- 10.5 Non-amino Acid Inhibitors and Non-amino Acid Substrates -- 10.5.1 Guanidine -- 10.5.1.1 Inhibitor -- 10.5.1.2 Substrates -- 10.5.2 Isothiourea (ITU) -- 10.5.3 Amidine -- 10.5.4 Cyclic Amidines are Potent iNOS Selective Inhibitors -- 10.5.5 Indazole -- 10.6 Inhibition of NOS Function Targeted towards Cofactors -- 10.7 Regulators of NOS Gene Expression -- 10.8 NO Formation by an NOS-independent Pathway -- 10.8.1 Oxime -- 10.8.2 Hydroxyurea -- 10.9 Summary -- References -- Part 3 Clinical Applications of NO Donors -- 11 Nitric Oxide Donors in Cardiovascular Disease -- 11.1 Introduction -- 11.2 Clinical Cardiovascular Applications of NO Donor Therapy - Past and Present. , 11.3 Pharmacological Cardiovascular Mechanism of Action of NO Donors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    La Vergne :RSC,
    Keywords: Electronic books.
    Description / Table of Contents: Synthetic Glycomes aims to provide a comprehensive review of the current state of the synthetic glycome, synthetic strategies toward generating glycans with comprehensive structures, as well as the glycoarrays to unveil the glycan functions.
    Type of Medium: Online Resource
    Pages: 1 online resource (487 pages)
    Edition: 1st ed.
    ISBN: 9781788016575
    Series Statement: ISSN Series
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Washington, DC :American Chemical Society,
    Keywords: Glycoconjugates-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (345 pages)
    Edition: 1st ed.
    ISBN: 9780841221338
    Series Statement: ACS Symposium Series ; v.990
    DDC: 572/.567
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Subpixel imaging. ; Electronic books.
    Description / Table of Contents: This book provides a complete overview of subpixel image processing methods, basic principles, and different subpixel mapping techniques based on single or multi-shift remote sensing images. Real-life applications are a great resource for understanding how and where to use subpixel mapping with different remote sensing imaging data.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9781000820751
    DDC: 621.36/78
    Language: English
    Note: Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- Authors -- Chapter 1 Introduction -- 1.1 Background and Significance -- 1.1.1 Background of Subpixel Mapping -- 1.1.2 Significance of Subpixel Mapping -- 1.2 Research Status of Subpixel Mapping -- 1.2.1 Initialize-Then-Optimize Subpixel Mapping -- 1.2.2 Soft-Then-Hard Subpixel Mapping -- 1.2.3 Other Types of Subpixel Mapping -- 1.2.4 Research Status of Super-Resolution Technology -- 1.3 Problems in Subpixel Mapping -- 1.4 Main Research Contents and Chapter Arrangement -- References -- Chapter 2 Basic Principles of Subpixel Mapping -- 2.1 Introduction -- 2.2 Spectral Unmixing Method -- 2.2.1 Linear Spectral Unmixing Model -- 2.2.2 Non-linear Spectral Unmixing Model -- 2.3 Theoretical Basis of Spatial Correlation -- 2.4 Processing Flow of Subpixel Mapping -- 2.4.1 Subpixel Sharpening Method -- 2.4.2 Class Allocation Method -- 2.5 Evaluation Method of Subpixel Mapping Accuracy -- 2.6 Summary -- References -- Chapter 3 Subpixel Mapping Based on Single Remote Sensing Image -- 3.1 Introduction -- 3.2 Subpixel Mapping Based on Spatial-Spectral Interpolation -- 3.2.1 Interpolation Problem -- 3.2.2 Existing Subpixel Mapping Based on Interpolation -- 3.2.3 Processing Flow of the Proposed Method -- 3.2.4 Experimental Content and Result Analysis -- 3.3 Subpixel Mapping Based on Hopfield Neural Network With More Supervision Information -- 3.3.1 Traditional Subpixel Mapping Method Based on Hopfield Neural Network -- 3.3.2 Hopfield Neural Network With More Prior Information -- 3.3.3 Experiment Content and Result Analysis -- 3.4 Subpixel Mapping Based on Extended Random Walk -- 3.4.1 Multi-Scale Segmentation Algorithm -- 3.4.2 Extended Random Walk Algorithm -- 3.4.3 Class Allocation Method Based on Object Unit -- 3.4.4 Experimental Content and Result Analysis. , 3.5 Subpixel Mapping Based on Spatial-Spectral Correlation for Spectral Imagery -- 3.5.1 Spatial Correlation -- 3.5.2 Spectral Correlation -- 3.5.3 Spatial-Spectral Correlation Implementation -- 3.5.4 Experimental Content and Result Analysis -- 3.6 Summary -- References -- Chapter 4 Subpixel Mapping Based on Multi-Shift Remote Sensing Images -- 4.1 Introduction -- 4.2 Theoretical Basis -- 4.2.1 Multi-Shift Images Problem -- 4.2.2 Existing Subpixel Mapping Method Based on Multi-Shift Images -- 4.3 Subpixel Mapping Method Based on Multi-Shift With Spatial-Spectral Information -- 4.3.1 Multi-Shift Image With More Spatial-Spectral Information -- 4.3.2 Experiment Content and Result Analysis -- 4.4 Subpixel Mapping Based on the Spatial Attraction Model With Multi-Scale Subpixel Shifted Images -- 4.4.1 Subpixel-Pixel Spatial Attraction Model -- 4.4.2 Subpixel-Subpixel Spatial Attraction Model -- 4.4.3 Spatial Attraction Model With Multi-Scale Subpixel Shifted Image -- 4.4.4 Experiment Content and Result Analysis -- 4.5 Utilizing Parallel Networks to Produce Subpixel Shifted Images With Multi-Scale Spatial-Spectral Information for Subpixel Mapping -- 4.5.1 Multi-Scale Network and Spatial-Spectral Network -- 4.5.2 Multi-Scale Spatial-Spectral Information -- 4.5.3 Experimental Content and Result Analysis -- 4.6 Spatiotemporal Subpixel Mapping by Considering the Point Spread Function Effect -- 4.6.1 Spatial Dependence -- 4.6.2 Temporal Dependence -- 4.6.3 Spatiotemporal Dependence -- 4.6.4 Experimental Content and Result Analysis -- 4.7 Summary -- References -- Chapter 5 Subpixel Mapping of Remote Sensing Image Based on Fusion Technology -- 5.1 Introduction -- 5.2 Soft-Then-Hard Subpixel Mapping Based on Pansharpening Technology -- 5.2.1 Pansharpening Technology -- 5.2.2 STHSRM-PAN -- 5.2.3 Experimental Content and Result Analysis. , 5.3 Subpixel Land Cover Mapping Based on Parallel Processing Path for Hyperspectral Image -- 5.3.1 Fusion Path -- 5.3.2 Deep Learning Path -- 5.3.3 Dual Processing Path -- 5.3.4 Experimental Content and Result Analysis -- 5.4 Subpixel Mapping Based on Multi-Source Remote Sensing Fusion Data for Land Cover Classes -- 5.4.1 Data-Level Fusion -- 5.4.2 Feature Fusion -- 5.4.3 Obtaining Mapping Result -- 5.4.4 Experimental Content and Result Analysis -- 5.5 Summary -- References -- Chapter 6 Remote Sensing Image Subpixel Mapping Based on Classification Then Reconstruction -- 6.1 Introduction -- 6.2 Theoretical Basis -- 6.2.1 Super-Resolution Algorithm -- 6.2.2 Fully Supervised Information Classification Algorithm -- 6.3 Subpixel Mapping Based on MAP Super-Resolution Reconstruction Then Classification -- 6.3.1 Transformed MAP-Based Super-Resolution Reconstruction -- 6.3.2 LSSVM Classification Algorithm -- 6.3.3 Experiment Content and Result Analysis -- 6.4 Subpixel Mapping Based on Pansharpening Then Classification -- 6.4.1 Implementation Steps -- 6.4.2 Experiment Content and Result Analysis -- 6.5 Summary -- References -- Chapter 7 Application of Subpixel Mapping Technology in Remote Sensing Imaging -- 7.1 Introduction -- 7.2 Improving Flood Subpixel Mapping for Multispectral Image by Supplying More Spectral Information -- 7.2.1 Existing SRFIM -- 7.2.2 SRFIM-MSI -- 7.2.3 Experiment Content and Result Analysis -- 7.3 Subpixel Mapping of Urban Buildings Based in Multispectral Image With Spatial-Spectral Information -- 7.3.1 Spaceborne Multispectral Remote Sensing Image -- 7.3.2 Experiment Content and Result Analysis -- 7.4 Multispectral Subpixel Burned-Area Mapping Based on Space-Temperature Information -- 7.4.1 Space Part -- 7.4.2 Temperature Part -- 7.4.3 Implementation of STI -- 7.4.4 Experiment Content and Result Analysis -- 7.5 Summary -- References. , Appendix: Abbreviations -- Content Validity -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Medicine, Chinese. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (328 pages)
    Edition: 1st ed.
    ISBN: 9789811040443
    Language: English
    Note: Intro -- Preface -- Contents -- Part I: Background -- Chapter 1: Introduction: Computational Pulse Diagnosis -- 1.1 Principle of Pulse Signal -- 1.2 Traditional Pulse Diagnosis -- 1.3 Computational Pulse Signal Analysis -- 1.4 Summary -- References -- Part II: Pulse Signal Acquisition -- Chapter 2: Compound Pressure Signal Acquisition -- 2.1 Introduction -- 2.2 Application Scenario and Requirement Analysis -- 2.3 System Architecture -- 2.3.1 Mechanical Structure -- 2.3.2 Sensor -- 2.3.3 Circuit -- 2.3.4 Summary -- 2.4 System Evaluation -- 2.4.1 Sampled Pulse Signals -- 2.4.2 Computational Pulse Diagnosis -- 2.4.3 Comparisons with Other Pulse Sampling Systems -- 2.5 Summary -- References -- Chapter 3: Pulse Signal Acquisition Using Multi-sensors -- 3.1 Introduction -- 3.2 Framework of the Proposed System -- 3.2.1 Pulse Collecting -- 3.2.2 Pulse Processing and Interaction Design -- 3.3 Design of the Different Sensor Arrays -- 3.3.1 Pressure Sensor -- 3.3.2 Photoelectric Sensor Array -- 3.3.3 Combination of Pressure and Photoelectric Sensor Arrays -- 3.4 Multichannel Optimization -- 3.4.1 Selection of Base Channel -- 3.4.2 Multichannel Selection -- 3.5 The Optimization of Different Sensors Fusion -- 3.6 Experimental Results -- 3.6.1 Experiment 1 -- 3.6.2 Experiment 2 -- 3.7 Summary -- References -- Part III: Pulse Signal Preprocessing -- Chapter 4: Baseline Wander Correction in Pulse Waveforms Using Wavelet-Based Cascaded Adaptive Filter -- 4.1 Introduction -- 4.1.1 Pulse Waveform Analysis -- 4.1.2 Related Works on Baseline Drift Removal -- 4.2 The Proposed CAF -- 4.2.1 The Design of CAF -- 4.2.2 Detection Level of Baseline Drift Using ER -- 4.2.2.1 Why Detect ER -- 4.2.2.2 How to Compute the ER of Pulse Signal -- 4.2.3 The Discrete Meyer Wavelet Filter -- 4.2.3.1 Design of the Discrete Meyer Wavelet Filter. , 4.2.3.2 Performance of Discrete Meyer Wavelet Filter on Pulse Waveform -- 4.2.4 Cubic Spline Estimation Filter -- 4.2.4.1 Detecting Pulse's Onsets -- 4.2.4.2 Cubic Spline Estimation -- 4.3 Simulated Signals: Experimental Results and Analysis -- 4.3.1 Experimental Results of the CAF for Different Baseline Drifts -- 4.3.2 Experimental Results for Different ER Thresholds -- 4.3.3 Experimental Results for Several Typical Pulses -- 4.4 Experimental Results for Actual Pulse Records -- 4.5 Summary -- References -- Chapter 5: Detection of Saturation and Artifact -- 5.1 Introduction -- 5.2 Saturation and Artifact -- 5.2.1 Saturation -- 5.2.2 Artifact -- 5.3 The Detection of Saturation and Artifact -- 5.3.1 The Preprocessing and the Priority -- 5.3.2 Saturation Detection -- 5.3.3 Artifact Detection -- 5.4 Experimental Results -- 5.4.1 Saturation Detection -- 5.4.2 Artifact Detection -- 5.5 Summary -- References -- Chapter 6: Optimized Preprocessing Framework for Wrist Pulse Analysis -- 6.1 Introduction -- 6.2 Description of Pulse Database -- 6.2.1 Data Acquisition -- 6.2.2 Time Domain Characteristic -- 6.2.3 Frequency Domain Characteristic -- 6.3 Proposed Pulse Preprocessing Method -- 6.3.1 Pulse Denoising -- 6.3.2 Interval Selection -- 6.3.3 Baseline Drift Removal -- 6.3.4 Period Segmentation and Normalization -- 6.4 Experiments on Actual Pulse Database -- 6.4.1 Comparison of Pulse Denoising -- 6.4.2 Optimal Segmentation Strategy -- 6.4.3 Preprocessing for Pulse Diagnosis -- 6.5 Summary -- References -- Part IV: Pulse Signal Feature Extraction -- Chapter 7: Arrhythmic Pulse Detection -- 7.1 Introduction -- 7.2 Clinical Value of Pulse Rhythm Analysis -- 7.3 The Approach to Automatic Recognition of Pulse Rhythms -- 7.3.1 Lempel-Ziv Complexity Analysis -- 7.3.2 Definitions and Basic Facts -- 7.3.2.1 Definitions -- 7.3.2.2 Rules -- 7.3.2.3 Lemma. , 7.3.2.4 The Seven Pulse Patterns' Characteristics in Rhythms -- 7.3.3 Automatic Recognition of Pulse Patterns Distinctive in Rhythm -- 7.3.3.1 Preprocessing the Pulse Waveform -- 7.3.3.2 Pulse Interval Extraction and Calculation of its VC and VR -- 7.3.3.3 Symbolizing Pulse Interval Series and Subsequence Extraction -- 7.3.3.4 Arrhythmic Pulse Recognition Based on Lempel-Ziv Complexity Analysis -- 7.4 Experiments -- 7.5 Summary -- References -- Chapter 8: Spatial and Spectrum Feature Extraction -- 8.1 Introduction -- 8.2 Data Acquisition and Preprocessing -- 8.3 Feature Extraction -- 8.3.1 Spatial Feature Extraction of Blood Flow Velocity Signal -- 8.3.2 EMD-Based Spectrum Feature Extraction -- 8.3.2.1 Hilbert-Huang Transform -- 8.3.2.2 Feature Extraction by Hilbert-Huang Transform -- 8.4 Experimental Result and Discussion -- 8.5 Summary -- References -- Chapter 9: Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix -- 9.1 Introduction -- 9.2 Wrist Pulse Acquisition and Preprocessing Methods -- 9.2.1 Wrist Pulse Acquisition Platform -- 9.2.2 Wrist Pulse Preprocessing -- 9.3 Conventional Pulse Feature -- 9.3.1 Time Domain Feature -- 9.3.2 Frequency Domain Feature -- 9.4 2-D Pulse Feature Extraction -- 9.4.1 Motivation -- 9.4.2 Matrix Description for Pulse Waveforms -- 9.5 Experiments -- 9.5.1 Diabetes Diagnosis -- 9.5.2 Pregnancy Diagnosis -- 9.6 Summary -- References -- Chapter 10: Characterization of Inter-Cycle Variations for Wrist Pulse Diagnosis -- 10.1 Introduction -- 10.2 The Quasiperiodic Pulse Signals -- 10.3 Characterization of Inter-Cycle Variations -- 10.3.1 Preprocessing -- 10.3.2 The Simple Combination Method -- 10.3.3 Multi-scale Entropy -- 10.3.4 The Complex Network Method -- 10.4 Experimental Results -- 10.4.1 Datasets -- 10.4.2 Experiments and Results -- 10.5 Summary -- References. , Part V: Pulse Analysis and Diagnosis -- Chapter 11: Edit Distance for Pulse Diagnosis -- 11.1 Introduction -- 11.2 The Pulse Waveform Classification Modules -- 11.2.1 Pulse Waveform Acquisition -- 11.2.2 Pulse Waveform Preprocessing -- 11.2.3 Feature Extraction and Classification -- 11.3 The EDCK and GEKC Classifiers -- 11.3.1 Edit Distance with Real Penalty -- 11.3.2 DFWKNN and KDFKNN -- 11.3.3 The EDKC Classifier -- 11.3.4 The GEKC Classifier -- 11.4 Experimental Results -- 11.5 Summary -- References -- Chapter 12: Modified Gaussian Models and Fuzzy C-Means -- 12.1 Introduction -- 12.2 Wrist Pulse Signal Collection and Preprocessing -- 12.3 Feature Extraction and Feature Selection -- 12.3.1 A Two-Term Gaussian Model -- 12.3.2 Feature Selection -- 12.4 FCM Clustering -- 12.5 Experimental Result -- 12.6 Summary -- References -- Chapter 13: Modified Auto-regressive Models -- 13.1 Introduction -- 13.2 The Proposed Method -- 13.2.1 Feature Extraction via AR Modelling -- 13.2.2 SVM Classification -- 13.2.3 The Selection of Doppler Ultrasonic Diagnostic Parameters -- 13.3 Experimental Results -- 13.3.1 Data Description -- 13.3.2 Experimental Results by Using the AR Features -- 13.3.3 Experimental Results by Using the Doppler Parameters as Additional Features -- 13.4 Conclusions and Future Work -- References -- Chapter 14: Combination of Heterogeneous Features for Wrist Pulse Blood Flow Signal Diagnosis via Multiple Kernel Learning -- 14.1 Introduction -- 14.2 Pulse Signal Feature Extraction -- 14.2.1 Nontransform-Based Feature Extraction -- 14.2.1.1 AR Model -- 14.2.1.2 Time Series Matching -- 14.2.2 Transform-Based Feature Extraction -- 14.3 Pulse Signal Classification Based on MKL -- 14.3.1 Kernel Functions -- 14.3.2 SimpleMKL -- 14.4 Experimental Results and Discussion -- 14.4.1 Classification Experimental of Wrist Blood Flow Signal. , 14.4.2 Other Pulse Classification Application -- 14.5 Summary -- References -- Part VI: Comparison and Discussion -- Chapter 15: Comparison of Three Different Types of Wrist Pulse Signals -- 15.1 Introduction -- 15.2 Measurement Mechanism -- 15.2.1 Measurement Mechanism of Pressure Sensors -- 15.2.2 Measurement Mechanism of Photoelectric Sensors -- 15.2.3 Measurement Mechanism of Ultrasonic Sensors -- 15.3 Dependency and Complementarity -- 15.3.1 Assumptions -- 15.3.2 Relationship Among Blood Velocity, Radius, and Pressure in Steady Laminar Flow -- 15.3.3 Influence of Physiological and Pathological Factors -- 15.3.4 Summary -- 15.4 Case Studies -- 15.4.1 Method -- 15.4.2 Diabetes Experiment -- 15.4.3 Arteriosclerosis Experiment -- 15.5 Summary -- References -- Chapter 16: Comparison Between Pulse and ECG -- 16.1 Introduction -- 16.2 Methods -- 16.2.1 Analysis of ECG and Wrist Pulse Signals -- 16.2.2 Acquisition of ECG and Wrist Pulse Signal -- 16.2.3 Construction of the Dataset -- 16.2.4 Entropy-Based Complexity Analysis -- 16.2.5 Classification Accuracy and Statistical Test -- 16.2.5.1 Feature Extraction of Wrist Pulse Blood Flow Signal -- 16.2.5.2 Feature Extraction of ECG Signal -- 16.2.5.3 Classifiers -- 16.2.5.4 McNemar Test -- 16.3 Results -- 16.3.1 Comparison of Complexity Measures -- 16.3.2 Comparison of Classification Performance -- 16.3.3 Typical Examples of Wrist Pulse Blood Flow and ECG Signals -- 16.3.4 Classification Accuracy and McNemar Test -- 16.4 Summary -- References -- Chapter 17: Discussion and Future Work -- 17.1 Recapitulation -- 17.2 Future Work -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...