GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 26 (1987), S. 4148-4156 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 466 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 18 (1991), S. 55-62 
    ISSN: 0886-1544
    Keywords: purified tubulin ; computer simulations ; polymer loss ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microtubules were assembled from purified tubulin in the buffer originally used to study dynamic instability (100 mM PIPES, 2 mM EGTA, 1 mM magnesium, 0.2 mM GTP) and then diluted in the same buffer to study the rate of disassembly. Following a 15-fold dilution, microtubule polymer decreased linearly to about 20% of the starting value in 15 sec. We determined the length distribution of microtubules before dilution, and prepared computer simulations of polymer loss for different assumed rates of disassembly. Our experimental data were consistent with a disassembly rate per microtubules of 60 μm/min. This is the total rate of depolymerization for microtubules in the rapid shortening phase, as determined by light microscopy of individual microtubules (Walker et al.: Journal of Cell Biology 107:1437-1448, 1988). We conclude, therefore, that microtubules began rapid shortening at both ends upon dilution. Moreover, since we could detect no lag between dilution and the onset of rapid disassembly, the transition from elongation to rapid shortening apparently occurred within 1 sec following dilution. Assuming that this transition (catastrophe) involves the loss of the GTP cap, and that cap loss is achieved by the sequential dissociation of GTP-tubulin subunits following dilution, we can estimate the maximum size of the cap based on the kinetic data and model interpretation of Walker et al. The cap is probably shorter than 40 and 20 subunits at the plus and minus ends, respectively.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 25 (1986), S. 2375-2384 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have used refractive index matching to determine the concentration of protein in the fibers in fibrin clots and of needlelike crystals of native fibrinogen. Our results are in agreement with those of Carr and Hermans [(1978) Macromolecules 11, 46-50], as determined by light scattering - namely, that protein makes up about 20% of the volume of the fiber. However, we have found that the protein concentration is strongly dependent on ionic strength. An increase in ionic strength caused a substantial drop in the protein concentration. In a buffer containing 100 mM NaCl, the protein concentration was 26.6-29.8 g of protein per 100 cm3 of polymer, and at 200 mM NaCl it was reduced to 22.1-23.1 g/100 cm3.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 25 (1986), S. 2359-2373 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The distinctive transverse banding pattern of fibrin fibers clearly indicates ordering of molecules in the longitudinal direction. In this study we examined the fibers of fibrin clots, as well as two types of fibrinogen polymers, by thin-section electron microscopy. The fibrinogen polymers have a transverse banding pattern identical to that of fibrin fibers - clearly indicating a regular longitudinal repeat - but they are larger in diameter, and show little or no branching. We therefore expected their overall ordering to be better than that of fibrin fibers. Several different fixation protocols were used. We readily observed the typical transverse banding seen previously by negative stain and metal replication techniques. However, only very rarely was any regular lateral lattice seen in any of the samples. X-ray diffraction was used to examine unfixed specimens of the two fibrinogen polymers and, once again, although a longitudinal repeat was evident, only rarely was evidence for lateral crystallinity seen. The electron-microscope and x-ray results showed that the needles and pellet fibers of fibrinogen have essentially the same internal architecture as thick fibrin fibers, and that all three types of polymer, although clearly transversely banded, have almost no crystallinity in their lateral protofibril packing.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 10 (1979), S. 419-431 
    ISSN: 0091-7419
    Keywords: microtubules ; assembly ; protein-protein interactions ; electron microscopy ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Tubulin rings have been previously identified as composed of linear polymers of tubulin subunits, equivalent to a protofilament in the microtubule wall but in a curved rather than a straight conformation. We have examined and measured a number of different ring structures obtained under different conditions. The preferred curvature is indicated by a single ring of 380 Å outside diameter. Radially double rings consist of two coplanar rings of 460 Å and 350 Å outside diameter, held together by a pattern of eight identical contacts between the 40 Å subunits in the inner and outer rings. In some circumstances a larger ring, 570 Å diameter, can be added to the outside, or a smaller ring, 240 Å diameter, may be added to the inside of the radially double ring, in both cases repeating the pattern of eight radial contacts. The distortion of the filament from its relaxed 380 Å diameter curvature apparently can be made without disrupting the longitudinal bond between subunits in the filament, but must be stabilized by the energy of the radial contacts. All of these rings (single and radially double and triple) are observed to associate axially to form pairs or in some cases larger stacks. The radially double rings or an axially associated pair of these (quadruple ring) may also associate to form crystals. These are thin plates, up to 100 μm in extent and several μm thick which have been of limited use so far in diffraction studies because of irregularities in the packing of adjacent rings.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...