GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Activation of heterotrimeric G proteins involves GDP-GTP exchange at the G7 subunit followed by dissociation of the Ga/?v complex into free (activated) G, and Ga-GTP9. Various combinations of G and Gy subtypes activate atrial GIRK with similar potency5; it is therefore puzzling that ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words K+ channels ; Muscarinic M2 receptors ; Sodium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The G-protein-activated K+ channels of the GIRK (Kir 3) family are activated by Gβγ subunits of heterotrimeric Gi/Go proteins. Atrial GIRK currents evoked by acetylcholine (ACh)1 via muscarinic m2 receptors (m2R) display prominent desensitization. We studied desensitization of basal and ACh-evoked whole-cell GIRK currents in Xenopus oocytes. In the absence of receptor and/or agonist, the basal GIRK activity showed inactivation which was prominent when the preparation was bathed in a low-Na+, high-K+ extracellular solution (96 mM [K+]out and 2 mM [Na+]out) but did not occur in a normal physiological solution. Ion substitution experiments showed that this basal, agonist-independent inactivation was caused by the decrease in [Na+]out rather than by the increased [K+]out. We hypothesize that it reflects a depletion of intracellular Na+. ACh-evoked GIRK currents desensitized faster than the basal ones. The agonist-induced desensitization was present when the preparation was bathed in all solutions tested, independently of [Na+]out. A protein kinase C (PKC) activator inhibited the GIRK currents both in high and low [Na+]out, apparently mimicking agonist-induced desensitization; however, a potent serine/threonine protein kinase blocker, staurosporine, blocked only a minor part of desensitization. We conclude that basal inactivation and agonist-induced desensitization are separate processes, the former caused by changes in Na+ concentrations, and the latter by unknown factor(s) with only a minor contribution of PKC.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...