GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 152 (1998), S. 165-174 
    ISSN: 1420-9136
    Keywords: Key words: Volcanic earthquakes, microseismicity, statistical analysis, Mt. Etna.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —An analysis in terms of time correlation functions has been applied to the time distribution of microseismicity. We considered the single station detections (M 〈 2) recorded by each one of the four working stations of the network of the Osservatorio Sismologico di Protezione Civile, Acireale (Catania), located on the active faults systems (Timpe) of the low eastern flank of Mt. Etna. Information obtained on the time regularity of seismic crisis and on the time correlation between the activities recorded by different stations allowed a better understanding of the role of the two main structures. The Timpa di Santa Tecla is the most seismogenic structure in the area and probably played a role in the magma transfer process for the 1989 eruption. Modifications of the local stress field by actions of this feature may have produced gravitational instability along a second structural system (the Timpa di S. Leonardello) with a time delay of about 100 days. By contrast, magma penetration associated with the larger eruption of 1991–1993 had a deeper rise system and had no effect on local stress conditions, consequently there was no correlation between volcanism and seismicity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of seismology 4 (2000), S. 191-196 
    ISSN: 1573-157X
    Keywords: clustering ; fractal dimension ; Mt. Etna Volcano ; seismicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Space and time clustering properties ofseismic activity, affecting Etna Volcano (Italy)during 1981–1991, are investigated by fractaldimension analysis. Very interesting volcanic andseismic activity occurred within this time interval.Temporal evolution of the time fractal dimension D t calculated on a moving window, revealscorrelation with the eruptive processes at differenttime scales confirming results obtained for a differenttime span (De Rubeis et al., 1997). Spatial fractaldimension D s shows to be negativelycorrelated with the time fractal dimension D t, suggesting a peculiar dynamic patternassociated with volcanic processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-10
    Description: We present a systematic study on the influence of pressure (0.1–600 MPa), temperature (750–1200 °C), carbon dioxide fugacity (log f CO 2  = –4.41 to 3.60) and time (2–12 hr) on the chemical and physical properties of carbonate rock. Our experiments aim to reproduce the conditions at the periphery of magma chamber where carbonate host rock is influenced by, but not readily assimilated by, magma. This permits the investigation of the natural conditions at which circulating fluids/gases promote infiltration reactions typical of metasomatic skarns that can involve large volumes of subvolcanic carbonate basements. Results show that, providing that carbon dioxide is retained in the pore space, decarbonation does not proceed at any magmatic pressure and temperature. However, when the carbon dioxide is free to escape, decarbonation can occur rapidly and is not hindered by a low initial porosity or permeability. Together with carbon dioxide and lime, portlandite, a mineral commonly found in voluminous metasomatic skarns, readily forms during carbonate decomposition. Post-experimental analyses highlight that thermal microcracking, a result of the highly anisotropic thermal expansion of calcite, exerts a greater influence on rock physical properties (porosity, ultrasonic wave velocities and elastic moduli) than decarbonation. Our data suggest that this will be especially true at the margins of dykes or magma bodies, where temperatures can reach up to 1200 °C. However, rock compressive strength is significantly reduced by both thermal cracking and decarbonation, explained by the relative weakness of lime + portlandite compared to calcite, and an increase in grain size with increasing temperature. Metasomatic skarns, whose petrogenetic reactions may involve a few tens of cubic kilometres, could therefore represent an important source of volcanic instability.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-01
    Description: Fluid-rock interactions can control earthquake nucleation and the evolution of earthquake sequences. Experimental studies of fault frictional properties in the presence of fluid can provide unique insights into these interactions. We report the first results from experiments performed on cohesive silicate-bearing rocks (microgabbro) in the presence of pressurized pore fluids (H 2 O, drained conditions) at realistic seismic deformation conditions. The experimental data are compared with those recently obtained from carbonate-bearing rocks (Carrara marble). Contrary to theoretical arguments, and consistent with the interpretation of some field observations, we show that frictional melting of a microgabbro develops in the presence of water. In microgabbro, the initial weakening mechanism (flash melting of the asperities) is delayed in the presence of water; conversely, in calcite marble the weakening mechanism (brittle failure of the asperities) is favored. This opposite behavior highlights the importance of host-rock composition in controlling dynamic (frictional) weakening in the presence of water: cohesive carbonate-bearing rocks are more prone to slip in the presence of water, whereas the presence of water might delay or inhibit the rupture nucleation and propagation in cohesive silicate-bearing rocks.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2021-06-15
    Description: No eruption, no caldera collapse, and no landslide can take place in a volcano unless its state of stress is suitable for the associated type of rock failure. The state of stress, in turn, results in deformation, and both stress and deformation depend on the mechanical properties of the rocks that constitute the volcano. Understanding stress and deformation in volcanoes is thus of fundamental importance for understanding unrest periods and for accurate forecasting volcano failure, such as may result in large-scale lateral and vertical collapses and eruptions.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: stress, deformation, volcano tectonics, physical propertie of volcanic rocks ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-17
    Description: Recent seismic swarms and hydrothermal activity suggest that the Quaternary volcanic complex of the Alban Hills may pose a threat to the city of Rome. A 350m scientific borehole was therefore drilled into this volcanic area to elucidate its inner structure for the first time. Wire-line logs were run in the borehole in order to characterize the physical properties of the rocks and their variations with depth. In particular, a detailed sonic log was run to measure the P-wave velocity from the well-head down to 110 m. To further investigate velocity changes, we carried out laboratory measurements of P and S elastic wave velocities and fluid permeability at effective pressures up to 70 MPa during both increasing and decreasing pressure cycles on selected core samples representative of the main volcanic units. Specifically, we studied samples from two pyroclastic units representative of two classes of volcanic deposits that are representative of the whole succession: (i) a coarse-grained, well-lithified facies (Pozzolane Rosse unit), containing abundant mm-to-cm lava clasts and crystals; and (ii) a fine-grained, matrix-supported pyroclastic deposit (Tufo Pisolitico di Trigoria unit), with rare lithic lava clasts and sparse pumice. Elastic wave velocities reveal significant differences between units and indicate how, within the same lithology, the different degree of lithification and presence of clasts can affect significantly physical property values. The mean laboratory value of the Pwave velocity for Pozzolane Rosse and Tufo Pisolitico di Trigoria units is respectively of 3.75 and 3.2 km/s at an effective pressure equivalent to that at the depth at which the sonic velocity was measured. Under increasing effective pressure a profound influence on the transport properties is observed. Permeability ranges from the order of 10−18 m2 for the Pozzolane Rosse unit to the order of 10−15 m2 for the Tufo Pisolitico di Trigoria unit, in good agreement with the shallow aquifer circulating in the shallower units.
    Description: Published
    Description: 161-169
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Scientific borehole ; Volcanic rocks ; Physical properties ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-11-16
    Description: Volcanic edifices, such as Mt. Etna (Italy), are commonly subject to repeated cycles of stress over time due to the combination of magma emplacement from deep reservoirs to shallow depths and superimposed tectonic stresses. Such repeated stress cycles lead to anisotropic deformation and an increase in the level of crack damage within the rocks of the edifice and hence changes to their elastic moduli, which are a key parameter for reliable modelling of deformation sources. We therefore report results of changes in elastic moduli measured during increasing amplitude cyclic stressing experiments on dry and water-saturated samples of Etna basalt. In all experiments, the Young’s modulus decreased by approximately 30% over the total sequence of loading cycles, and the Poisson’s ratio increased by a factor of approximately 3 ± 0.5. Microseismicity, in terms of acoustic emission (AE) output, was also recorded throughout each experiment. Our results demonstrate that AE output only re-commences during any loading cycle when the level of stress where AE ceased during the unloading portion of the previous cycle is exceeded; a manifestation of the Kaiser stress-memory effect. In cycles where no AE output is generated, we also observe no change in elastic moduli. This result is observed for both mechanical and thermal stressing. Our results are interpreted in relation to measurements of volcano-tectonic seismicity and deformation at Mt. Etna volcano.
    Description: Published
    Description: 153-160
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: rock mechanics, elastic moduli, Etna basalt ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: With the help of the di0usion entropy technique we show the non-Poisson statistics of the distances between consecutive Omori’s swarms of earthquakes. We give an analytical proof of the numerical results of an earlier paper
    Description: Published
    Description: 201-205
    Description: partially_open
    Keywords: Earthquakes ; Time-series analysis ; Anomalous scaling ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 476 bytes
    Format: 210144 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We report measurements of acoustic emissions (AE) generated during formation and growth of pressure driven fractures in cylindrical samples of Darley Dale sandstone that were co-axially pre-drilled in order to allow an internal pressure to be applied. A set of 3 to 6 fractures initiate at the wall of the internal bore at a fluid pressure around three times that of the confining pressure, but only 3 propagate to the outer wall of the sample. Time and spatial distributions of acoustic emissions show two distinct bursts of activity, associated with initiation and propagation, respectively. A Particle Flow Code (PFC) model has been used to reproduce the mechanics of fracture initiation and the time and spatial distributions of AE. In both the experiments and the model, we observe a distinct phase of accelerating AE activity preceding fracture formation.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: fractures ; fluid pressure-driven ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 481292 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...