GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Most of the anthropogenic radionuclide 129I released to the marine environment from the nuclear fuel reprocessing plants (NFRP) at Sellafield (England) and La Hague (France) is transported to the Arctic Ocean via the North Atlantic Current and the Norwegian Coastal Current. 129I concentrations in seawater provides a powerful and well-established radiotracer technique to provide information about the mechanisms which govern water mass transport in the Nordic Seas and the Arctic Ocean and is gaining importance when coupled with other tracers (e.g. CFC, 236U). In this work, 129I concentrations in surface and depth profiles from the Nordic Seas and the North Atlantic (NA) Ocean collected from four different cruises between 2011 and 2012 are presented. This work allowed us to i) update information on 129I concentrations in these areas, required for the accurate use of 129I as a tracer of water masses; and ii) investigate the formation of deep water currents in the eastern part of the Nordic Seas, by the analysis of 129I concentrations and temperature-salinity (T-S) diagrams from locations within the Greenland Sea Gyre. In the Nordic Seas, 129I concentrations in seawater are of the order of 109 at·kg− 1, one or two orders of magnitude higher than those measured at the NA Ocean, not so importantly affected by the releases from the NFRP. 129I concentrations of the order of 108 atoms·kg− 1 at the Ellet Line and the PAP suggest a direct contribution from the NFRP in the NA Ocean. An increase in the concentrations in the Nordic Seas between 2002 and 2012 has been detected, which agrees with the temporal evolution of the 129I liquid discharges from the NFRPs in years prior to this. Finally, 129I profile concentrations, 129I inventories and T-S diagrams suggest that deep water formation occurred in the easternmost area of the Nordic Seas during 2012.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-08
    Description: The role of biominerals in driving carbon export from the surface ocean is unclear. We compiled surface particulate organic carbon (POC), and mineral ballast export fluxes from 55 different locations in the Atlantic and Southern Oceans. Substantial surface POC export accompanied by negligible mineral export was recorded implying that association with mineral phases is not a precondition for organic export to occur. The proportion of non-mineral associated sinking POC ranged from 0 to 80% and was highest in areas previously shown to be dominated by diatoms. This is consistent with previous estimates showing that transfer efficiency in such regions is low. However we propose that, rather than the low transfer efficiency arising from diatom blooms being inherently characterized by poorly packaged aggregates which are efficiently exported but which disintegrate readily in mid water, it is due to such environments having very high levels of unballasted organic C export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: Estimates of the amount of carbon sequestered in the ocean interior per unit iron (Fe) supplied, as quantified by the sequestration efficiency (Ceffx), vary widely. Such variability in Ceffx has frequently been attributed to estimate uncertainty rather than intrinsic variability. Here we derive new estimates of Ceffx for the subpolar North Atlantic, where Fe stressed conditions have recently been demonstrated. Derived values of Ceffx from across the region, including areas subject to atypical external Fe fertilization events during the year of sample collection (2010), ranged from 17 to 19 kmol C (mol Fe−1). Comparing these estimates with values from other systems, considered in the context of variable bloom durations in the different oceanographic settings, we suggest that apparent variability in Ceffx may be related to the mode of Fe delivery.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Exploitation and degradation of the mysterious layer between the sunlit ocean surface and the abyss jeopardize fish stocks and the climate.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-14
    Description: Physical, chemical and biogeochemical measurements derived from CTD-rosette deployments during three visits to site P3 (November to December, 2017) in the South Atlantic. Measurements were made during COMICS cruise DY086 on the RRS Discovery using a trace metal free Titanium Rosette (events 4, 7, 15, 19, 24, 26, 29) and a Stainless Steel Rosette (all other events). Physical parameters include temperature, salinity, density, photosynthetically active radiation and turbulence; chemical parameters include dissolved oxygen, dissolved oxygen saturation, nitrate, phosphate and silicate; biogeochemical parameters include turbidity, beam transmittance, beam attenuation, fluorescence, particulate organic carbon (POC), dissolved organic carbon (DOC), chlorophyll-a, net primary productivity (NPP), ambient leucine assimilation and bacterial cell count. To determine turbulence, a downward facing lowered acoustic doppler current profiler (LADCP, Teledyne Workhorse Monitor 300 kHz ADCP) was attached to the CTD frame. Shear and strain, which are obtained from velocity and density measurements, were used to estimate the dissipation rate of turbulent kinetic energy and the diapycnal eddy diffusivity from a fine-scale parameterisation. Estimates are calculated by parameterising internal wave-wave interactions and assuming that wave breaking modulates turbulent mixing. A detailed description of the method for calculating diffusivity from LADCP and CTD can be found in Kunze et al. (2006). Two datasets with different vertical resolutions were produced: one in which the shear is integrated from 150 to 300 m and the strain over 20-150 m, and one in which the shear is integrated from 70 to 200 m and the strain over 30-200 m. Nutrients (nitrate, phosphate, silicate) were determined via colourimetric analysis (see cruise report, Giering and Sanders, 2019), POC was determined as described in Giering et al. (2023), DOC and DOC flux were determined as described in Lovecchio et al. (2023), NPP was determined as described in Poulton et al. (2019), and ambient leucine assimilation and bacterial cell count were determined as described in Rayne et al. (2024). Bacterial abundance and leucine assimilation were made from bottle samples of six CTD casts of the stainless-steel rosette. Water was collected at six depths (6 m, deep-chlorophyll maximum, mixed layer depth + 10, 100, 250 and 500 m). Acid-cleaned HDPE carboys and tubing were used for sampling. Samples were then stored in the dark and at in-situ temperature prior to on-board laboratory sample preparation or analysis. Flow cytometry was used to measure bacterial abundance. Room temperature paraformaldehyde was used to fix 1.6 ml samples for 30 minutes. Then, using liquid nitrogen, the samples were flash frozen and stored at -80°C. Samples were then defrosted before being stained using SYBR Green I and run through the flow cytometer (BD FACSort™). The method of Hill et al. (2013) was applied to determine prokaryotic leucine assimilation using L-[4,5-³H] leucine which has a specific activity of 89.3 Ci/mmol­. In the mixed and upper layers of the water column, the protocol in Zubkov et al. (2007) was followed. Below the mixed layer, adaptions to the method included reducing the concentration of ³H-Leucine to 0.005, 0.01, 0.025, 0.04 and 0.05 nM; increasing experimental volumes to 30 ml; enhancing incubation times to 30, 60, 90 and 120 min. These adaptions were made to improve accuracy where lower rates of leucine assimilation were expected. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council.
    Keywords: 74EQ20171115; Angular scattering coefficient, 700 nm; Attenuation, optical beam transmission; Bacteria; Barometer, Paroscientific, Digiquartz TC; biological carbon pump; Calculated; Calculated according to UNESCO (1983); Calculation according to Kunze et al. (2006); Carbon, organic, dissolved; Carbon, organic, dissolved, flux; Carbon, organic, particulate; Chlorophyll a; Colorimetric analysis; COMICS; Conductivity sensor, SEA-BIRD SBE 4C; Controls over Ocean Mesopelagic Interior Carbon Storage; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; Discovery (2013); Dissipation rate; Dissolved Oxygen Sensor, Sea-Bird, SBE 43 and SBE 43F; DY086; DY086_CTD002; DY086_CTD003; DY086_CTD004; DY086_CTD005; DY086_CTD006; DY086_CTD007; DY086_CTD008; DY086_CTD009; DY086_CTD010; DY086_CTD015; DY086_CTD016; DY086_CTD017; DY086_CTD018; DY086_CTD019; DY086_CTD020; DY086_CTD021; DY086_CTD022; DY086_CTD023; DY086_CTD024; DY086_CTD026; DY086_CTD027; DY086_CTD028; DY086_CTD029; DY086_CTD030; DY086_CTD031; DY086_CTD032; DY086_CTD033; Eddy diffusivity; Event label; Flow cytometer, Becton Dickinson, FACSort; Fluorometer, Chelsea Instruments, Aquatracka MKIII; fluxes; High Temperature Catalytic Oxidation, Shimadzu TOC-VCPN; LATITUDE; Leucine uptake rate; Liquid scintillation counter, Packard, TRI-CARB 3100TR; LONGITUDE; marine biogeochemistry; Net primary production of carbon; Nitrate; Organic Elemental Analyzer, Thermo Fisher Scientific, Flash 2000; Oxygen; Oxygen saturation; PAR sensor, Biospherical, LI-COR, SN 70510; PAR sensor, Biospherical, LI-COR, SN 70520; Phosphate; Radiation, photosynthetically active; Radioassays, liquid scintillation counting; Salinity; Scattering meter, WET Labs, ECO-BB OBS; Silicate; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, water; Temperature sensor, SEA-BIRD SBE 3Plus; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 171794 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-27
    Description: Discrete measurements of particulate organic carbon (POC) concentration and flux were made on the RRS Discovery during COMICS cruise DY086 at site P3 in the South Atlantic from November to December, 2017 (Giering et al. 2023). Data is from a variety of equipment including marine snow catchers, neutrally-buoyant sediment traps (PELAGRA) and a stand-alone pump system. Marine snow catchers settled on-deck for 2 hours. Slow sinking particles were collected from the base and fast sinking particles were collected from the tray. These data were used along with bottle POC data to calibrate glider backscatter data from the GOCART project.
    Keywords: 74EQ20171115; biological carbon pump; Carbon, organic, particulate; Carbon, organic, particulate, flux; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; DEPTH, water; Discovery (2013); DY086; DY086_MSC006; DY086_MSC007; DY086_MSC010; DY086_MSC015; DY086_MSC016; DY086_MSC019; DY086_MSC020; DY086_MSC022; DY086_MSC027; DY086_MSC028; DY086_MSC029; DY086_MSC034; DY086_MSC035; DY086_MSC036; DY086_MSC037; DY086_MSC038; DY086_MSC039; DY086_MSC040; DY086_MSC061; DY086_MSC062; DY086_MSC063; DY086_MSC067; DY086_MSC068; DY086_MSC069; DY086_MSC071; DY086_MSC072; DY086_MSC076; DY086_MSC077; DY086_MSC078; DY086_MSC079; DY086_MSC081; DY086_MSC082; DY086_MSC083; DY086_MSC084; DY086_MSC093; DY086_MSC094; DY086_MSC099; DY086_MSC100; DY086_MSC101; DY086_MSC103; DY086_MSC104; DY086_MSC105; DY086_MSC106; DY086_MSC111; DY086_MSC112; DY086_MSC113; DY086_MSC114; DY086_MSC125; DY086_MSC126; DY086_MSC127; DY086_MSC128; DY086_Pelagra006; DY086_Pelagra007; DY086_Pelagra008; DY086_Pelagra009; DY086_Pelagra010; DY086_Pelagra011; DY086_Pelagra012; DY086_Pelagra013; DY086_Pelagra014; DY086_Pelagra015; DY086_Pelagra016; DY086_Pelagra017; DY086_Pelagra018; DY086_Pelagra019; DY086_Pelagra020; DY086_Pelagra021; DY086_Pelagra022; DY086_Pelagra023; DY086_Pelagra024; DY086_Pelagra025; DY086_Pelagra026; DY086_Pelagra027; DY086_Pelagra028; DY086_Pelagra029; DY086_Pelagra030; DY086_Pelagra031; DY086_Pelagra032; DY086_Pelagra033; DY086_Pelagra034; DY086_Pelagra035; DY086_Pelagra036; DY086_Pelagra037; DY086_Pelagra038; DY086_SAPS001; DY086_SAPS002; DY086_SAPS003; DY086_SAPS004; DY086_SAPS005; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Marine snow catcher; MSC; PELAGRA; SAPS; Site; Stand-alone pumps; SUMMER; Sustainable Management of Mesopelagic Resources; Trap, sediment, drifting
    Type: Dataset
    Format: text/tab-separated-values, 366 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-30
    Description: The ²³⁴Th-²³⁸U radioactive pair has been extensively used to evaluate the efficiency with which photosyntetically fixed carbon is exported from the surface ocean by means of the biological pump since the 90's. The seminal work of Buesseler et al. (1992) proposed that particulate organic carbon (POC) flux can be indirectly calculated from ²³⁴Th distributions if the ratio of POC to ²³⁴Th measured on sinking particles (POC:²³⁴Th) at the desired export depth is known. Since then, a huge amount of ²³⁴Th depth profiles have been collected using a variety of sampling instruments and strategies that have changed along years. This is a global oceanic compilation of ²³⁴Th measurements, that collects results from innumerable researchers and laboratories over a period exceeding 50 years. The present compilation is made of a total 223 datasets: 214 from studies published either in articles in referred journals, PhD thesis or repositories, and 9 unpublished datasets. Including measurements from JGOFS, VERTIGO and GEOTRACES programs, with sampling from approximately 5000 locations spanning all the oceans. The compilation includes total ²³⁴Th profiles, dissolved and particulate ²³⁴Th concentrations, and POC:²³⁴Th ratios (both from pumps and sediment traps) for two sizes classes (1-53 μm and 〈 53 μm) when available. Appropriate metadata have been included, including geographic location, date, and sample depth, among others. When available, we also include water temperature, salinity, ²³⁸U data and particulate organic nitrogen data. Data sources and methods information (including ²³⁸U and ²³⁴Th) are also detailed along with valuable information for future data analysis such as bloom stage and steady/non-steady state conditions at the sampling moment. This undertaking is a treasure of data to understand and quantify how oceanic carbon cycle functions and how it will change in future. The compilation can be downloaded in three different ways: 1) A single merged file including all the individual excel files. This option can be accessed under "Other version: More than 50 years of Th-234 data: a comprehensive global oceanic compilation (single xlsx file)". 2) A summary table that includes details from cruise, sampling dates, techniques applied, authors and DOI of the compiled ²³⁴Th data, among others, each line corresponds to a specific dataset. The table can be accessed by clicking ""View dataset as HTML" and downloaded in "Download dataset as tab-delimited text". 3) Individual Excel files for each dataset can be manually chosen from the summary table, corresponding to the complete ²³⁴Th dataset and metadata from a specific publication or program. This option is available by clicking "View dataset as HTML". Furthermore, all files referred to can be downloaded in one go as ZIP or TAR.
    Keywords: 234Th; Author(s); Binary Object; biological carbon pump; Carbon, organic, particulate/Thorium-234 ratio; carbon export; Chief scientist(s); Cruise/expedition; DATE/TIME; ELEVATION; Gear; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; JGOFS; Joint Global Ocean Flux Study; Journal/report title; LATITUDE; LONGITUDE; Multiple cruises/expeditions; Ocean; Ocean and sea region; Period; POC flux; Project; Reference of data; Thorium-234, dissolved; Thorium-234, particulate; Thorium-234, total; Uniform resource locator/link to reference; Uranium-238; Vessel; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 4056 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-13
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L15610, doi:10.1029/2012GL052980.
    Description: The role of biominerals in driving carbon export from the surface ocean is unclear. We compiled surface particulate organic carbon (POC), and mineral ballast export fluxes from 55 different locations in the Atlantic and Southern Oceans. Substantial surface POC export accompanied by negligible mineral export was recorded implying that association with mineral phases is not a precondition for organic export to occur. The proportion of non-mineral associated sinking POC ranged from 0 to 80% and was highest in areas previously shown to be dominated by diatoms. This is consistent with previous estimates showing that transfer efficiency in such regions is low. However we propose that, rather than the low transfer efficiency arising from diatom blooms being inherently characterized by poorly packaged aggregates which are efficiently exported but which disintegrate readily in mid water, it is due to such environments having very high levels of unballasted organic C export.
    Description: This work is part of the lead author’s doctoral research and was supported by the CalMarO program, (E.U, grant agreement 215157) and by the U.K. Ocean 2025 program.
    Description: 2013-03-11
    Keywords: 234Th ; POC ; Ballast ; Particles export
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...