GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Bioconjugates. ; Pharmaceutical chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (334 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443221996
    Serie: Issn Series
    DDC: 612.1111
    Sprache: Englisch
    Anmerkung: Intro -- Bioconjugated Materials Part 2 Applications in Drug Delivery, Vaccine Formulations and Important Conjugates for Cancer Therapy -- Copyright -- Contents -- Contributors to Volume 103 -- About the editors -- Preface -- References -- Series editor's preface -- Chapter One: Multifunctional bioconjugates and their utilities -- 1. Introduction -- 2. Bioconjugation chemistry -- 3. Molecular conjugates -- 3.1. Carbohydrate oligonucleotides conjugates -- 3.2. Lipid oligonucleotides conjugates -- 3.3. Polymeric oligonucleotides conjugates -- 3.4. Antibody oligonucleotides conjugates -- 3.5. Aptamer oligonucleotide conjugates -- 3.6. Small molecule targeting conjugates -- 4. Bioconjugates as functional carriers -- 4.1. Polymer drug conjugates -- 5. Utility of nanobioconjugates in pharmacokinetics -- 6. Future perspectives of bioconjugation -- 7. Conclusions -- Acknowledgements -- References -- Chapter Two: Bioconjugated materials as potential vehicles for delivery of antibiotics/drugs -- 1. Introduction -- 2. Strategies for bioconjugate fabrication -- 2.1. Covalent conjugation -- 2.2. Noncovalent conjugation -- 3. Materials for antibiotics/drugs conjugation -- 3.1. Natural materials for antibiotics/drugs conjugation -- 3.1.1. Pectin -- 3.1.2. Dextran -- 3.1.3. Cellulose -- 3.1.4. Guar gum -- 3.1.5. Pullulan -- 3.1.6. Gum acacia -- 3.2. Synthetic materials for antibiotics/drugs conjugation -- 3.2.1. Polylactic acid (PLA) -- 3.2.2. Poly(lactic-co-glycolic acid) (PLGA) -- 3.2.3. Polycaprolactone -- 3.2.4. Poly(butylene succinate) -- 3.2.5. Polydioxanone (PDS) -- 4. Commercially available materials-conjugated antibiotics/drugs products -- 5. Conclusions and future directions -- Acknowledgements -- Conflicts of interest -- References -- Chapter Three: Bioconjugated materials in the development of subunit vaccines -- 1. Introduction. , 2. Recombinant protein and synthetic peptide-based subunit vaccines -- 2.1. Recombinant protein-based subunit vaccines -- 2.2. Synthetic peptide-based subunit vaccines -- 3. Bioconjugation methods in subunit vaccines -- 3.1. Staudinger ligation reaction -- 3.2. Diels-Alder reaction -- 3.3. N-Hydroxysuccinimide esters -- 3.4. Copper-catalysed alkyne-azide cycloaddition reaction -- 3.5. Strain promoted alkyne-azide cycloaddition -- 4. Bioconjugation materials in subunit vaccines -- 4.1. Polymeric materials as subunit vaccine adjuvants -- 4.1.1. Polysaccharides -- 4.1.1.1. Chitosan and its derivatives in subunit vaccines -- 4.1.1.2. Glucan-based subunit vaccines -- 4.1.1.3. Mannose-containing subunit vaccines -- 4.1.1.4. Insulin-containing subunit vaccines -- 4.1.2. Polyamino acids -- 4.1.3. Synthetic polymers -- 4.2. Lipids in subunit-based vaccines -- 4.2.1. Glycosphingolipids -- 4.2.2. Lipopolysaccharides -- 4.2.3. Lipoproteins and lipopeptides -- 5. Conclusions -- Conflicts of interest -- Funding -- References -- Chapter Four: Antibody-drug conjugates for cancer therapy: An up-to-date review on the chemistry and pharmacology -- 1. Introduction -- 2. Chemotherapeutic agents in cancer treatment -- 2.1. Need of chemotherapeutic agents -- 2.2. Problems of chemotherapeutic agents -- 3. Antibody engineering to improve effector functions -- 3.1. FcγR binding leads to cellular effector function -- 3.2. Fc engineering to improve the function of antibody effector cells -- 3.2.1. Amino acid substitutions enhance effector cell function -- 3.2.2. Glycoengineering to enhance effector cell function: ADCC and CDC -- 3.3. Fc engineering to enhance antibody-mediated complement dependent cytotoxicity -- 4. Monoclonal antibody-drug conjugates -- 4.1. Need of antibody-drug conjugates -- 4.2. Selection criteria for antibody-drug conjugates. , 4.3. Characteristics of antibody-drug conjugates -- 4.4. Mechanism of action of ADCs -- 5. Types of antibody-drug conjugates -- 5.1. Conjugation of ADCs using sugars -- 5.2. Conjugation of ADCs using enzymes -- 5.2.1. Sortase -- 5.2.2. Transglutaminase -- 5.2.3. Formyl-glycine-generating enzyme -- 5.2.4. Endoglycosidase -- 5.2.5. Spyligase -- 5.2.6. Trypsiligase and subtiligase -- 5.2.7. Phosphopantetheinyl transferase -- 5.2.8. O6-alkylguanine-DNA alkyltransferase (AGT) or SNAP-Tag -- 5.3. Conjugation of ADCs using lysine -- 5.4. Conjugation of ADCs using cysteine -- 6. Click conjugation -- 6.1. CuAAC and SPAAC reactions -- 7. Importance of linkers in making antibody-drug conjugates -- 7.1. Non-cleavable linkers -- 7.1.1. Type of chemical bond -- 7.1.2. Stability -- 7.1.3. Release mechanism -- 7.2. Chemically labile linkers -- 7.2.1. pH sensitive linkers -- 8. Payloads for antibody-drug conjugates -- 8.1. Classification of payloads -- 8.1.1. Microtubule inhibitors -- 8.1.2. Immune-activating agents -- 9. Applications of antibody-drug conjugates -- 9.1. Case studies on the use of bioconjugates between antibodies and medications -- 9.1.1. Brentuximab vedotin (Adcetris) ADCs for prevention of Hodgkin lymphoma and systemic anaplastic large cell lymphoma -- 9.1.2. Ado-trastuzumab emtansine (Kadcyla) ADCs for HER2-positive breast cancer -- 9.1.3. Inotuzumab ozogamicin (Besponsa) ADCs for acute lymphoblastic leukaemia -- 9.1.4. Sacituzumab govitecan-hziy ADCs therapy for triple-negative breast cancer and other solid tumours -- 9.1.5. Seribantumab (MM121) ADCs therapy for the therapy of solid tumours -- 9.1.6. Polatuzumab vedotin (policy) ADCs treatment for diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) -- 9.1.7. ADCs blinatumomab (Blincyto) for acute lymphoblastic leukaemia (ALL). , 9.1.8. Isatuximab (Sarclisa) treatment for multiple myeloma -- 9.1.9. Marizomib ADC treatment for acute myeloid leukaemia (AML) and high-risk myelodysplastic syndrome (MDS) -- 9.1.10. Glembatumumab vedotin (Glemba) ADC for advanced melanoma -- 9.1.11. Tisotumab vedotin (Gemtesa) ADC treatment for cervical cancer -- 9.1.12. IMM-822 (Gemtuzumab ozogamicin) for acute myeloid leukaemia (AML) -- 9.1.13. IMM-124E (RG7422) for metastatic carcinoma of the gastrointestinal tract -- 9.1.14. Mirvetuximab soravtansine-gynx for epithelial ovarian, fallopian tube, or primary peritoneal cancer -- 9.2. Applications of ADCs in diagnostic imaging -- 9.2.1. Fluorochrome-conjugated antibodies -- 9.2.2. Gold-conjugated antibodies -- 9.2.3. Enzyme-conjugated antibodies -- 9.3. Applications of ADCs in the treatment of other diseases -- 10. Toxicities of antibody-drug conjugates -- 10.1. Organan toxicity -- 10.1.1. Thrombocytopenia -- 10.1.2. Neutropenia -- 10.1.3. Eye poisoning -- 10.1.4. Peripheral neuropathy -- 10.1.5. Skin poisoning -- 10.1.6. Hepatotoxicity -- 10.1.7. Toxicities of endothelial cells -- 10.1.8. Toxicities seen in preclinical studies -- 10.2. Mechanism of action -- 11. Clinical trials -- 11.1. Patent updates -- 11.1.1. Phosphoinositide 3 kinases (PI3K)/Akt/mammalian (or mechanistic) target of rapamycin (mTOR) system conjugation fo ... -- 11.1.2. FOLATE-GSH-IgG conjugate for malignancies and autoimmune disease -- 11.1.3. Nemorubicin metabolite or analogue drug moieties for cancer treatment -- 11.1.4. Glucose oxidase-iron oxide bioconjugates induce cancer cell death -- 11.1.5. Anti-TENB2 cysteine-engineered antibodies for prostate cancer -- 12. Conclusions and future perspectives -- References -- Chapter Five: Importance of carbohydrate-drug conjugates in vaccine development: A detailed review -- 1. Introduction -- 2. Carbohydrates in vaccine development. , 2.1. Role of carbohydrates in the immune system -- 2.2. Need of chemical modification of carbohydrates -- 3. Methods of carbohydrate conjugation -- 3.1. Conjugation by using cyanylation -- 3.2. Conjugation by using carbodiimide -- 3.3. Conjugation by using thioalkylation -- 3.4. Conjugation by using thiol-maleimide -- 3.5. Conjugation by using reductive amination -- 3.6. Conjugation by using active ester -- 4. Site-selective glycan protein conjugation -- 4.1. Chemical modification of natural amino acid residues -- 4.2. Enzyme-catalysed conjugation -- 4.3. Incorporation of unnatural amino acids -- 4.4. Glycoengineering -- 5. Role of zwitterionic polysaccharides (ZPs) -- 5.1. Mannan -- 6. Mannan-MUC1 fusion protein (Ma-FP) conjugation -- 6.1. Mannan as carrier of DNA vaccines -- 6.2. Mannan as carrier of allergy vaccines -- 7. Modified dextran conjugates -- 7.1. Structure and properties of dextran -- 7.2. Acetalated dextran microparticles -- 7.3. Acetalated dextran (Ac-Dex) particles loaded with ovalbumin (OVA) -- 7.4. Reducible dextran nanogel -- 7.5. Oxidation sensitive dextran -- 7.6. Amphiphilic pH-sensitive galactosyl-dextran-retinal (GDR) nanogel conjugates -- 8. Licensed glycoconjugate vaccines available in the market -- 9. Patent updates and clinical trials of carbohydrate bioconjugates -- 9.1. Patent updates for carbohydrate bioconjugates -- 9.2. Clinical trials of carbohydrate bioconjugates -- 10. Conclusions -- Acknowledgements -- References -- Chapter Six: Quintessential impact of dendrimer bioconjugates in targeted drug delivery -- 1. Introduction -- 2. Dendrimers in drug delivery -- 2.1. Structure assembly details of dendrimers -- 2.2. Role of dendrimers in the drug delivery system -- 3. Dendrimer-drug conjugates -- 3.1. Need of dendrimer-drug conjugates -- 3.2. Advantages of dendrimer-drug conjugates. , 3.3. Types of dendrimer-drug conjugates.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Botanical chemistry. ; Plants. ; Nanostructured materials. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (390 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128198322
    Serie: Issn Series ; v.Volume 84
    DDC: 620.5
    Sprache: Englisch
    Anmerkung: Front Cover -- Analysis, fate, and toxicity of engineered nanomaterials in plants -- Copyright -- Contents -- Contributors to volume 84 -- About the editors -- Series editor´s preface -- Preface -- Chapter One: Recent advancements and new perspectives of phytonanotechnology -- 1. Introduction -- 2. Recent advances -- 2.1. Application of nanomaterials for seed germination and seed growth -- 2.2. Enhancement of uptake and translocation of nanomaterials in plant -- 2.3. Modification of metabolism of plants by engineered nanomaterials -- 3. Investigations on ecotoxicity and fate of phyto-synthesized nanomaterial -- 4. Investigations on molecular responses of plants to engineered nanomaterials -- 5. The perspective of phytonanotechnology and the use of nanomaterials in plants -- 6. Concluding remarks -- References -- Chapter Two: Plant cell nanomaterials interaction: Growth, physiology and secondary metabolism -- 1. Introduction -- 2. Metallic nanoparticles effect development of plants -- 3. The effect of nanoparticles on plant secondary metabolism -- 4. Impact of nanomaterials on plant biochemical parameters -- 5. Applications of nanomaterials during plant in vitro cultures -- 5.1. Towards callus induction and organogenesis -- 5.2. Nanoparticles induce somaclonal variations -- 5.3. Towards controlling contamination -- 5.4. Size directs the function of nanomaterials in plants -- 5.5. Concentration affects the function of NPs in plants -- 6. Adverse effects of nanomaterials on plants -- 7. Conclusions and future prospects -- References -- Chapter Three: Interaction of nanomaterials in secondary metabolites accumulation, photosynthesis, and nitrogen fixation ... -- 1. Introduction -- 2. The effects of ENMs on secondary metabolites accumulation -- 3. The effects of ENMs on photosynthesis -- 4. The effects of ENMs on nitrogen fixation. , 5. Conclusion and future research needs -- References -- Chapter Four: Impacts of metal oxide nanoparticles on seed germination, plant growth and development -- 1. Nanoparticles in the environment -- 2. The nanoparticle characteristics involved in fate and effects on plants -- 3. External factors that affect nanoparticle behaviour in soil and toxicity -- 4. Methodological approach and endpoints to assess the toxicity of NPs in plants -- 5. Introduction to the phytotoxicity mechanism of metal oxide (MO) NPs -- 6. ZnO NPs -- 6.1. Introduction -- 6.2. Effects of ZnO NPs on plants and influence of assay conditions -- 6.3. Influence of soil pH in the phytotoxicity of ZnO NPs -- 6.4. Comparison of the effects of ZnO microparticles and Zn ion versus ZnO NPs -- 6.5. Toxicity mechanisms of ZnO NPs in plants -- 6.6. Conclusions -- 7. CuO NPs -- 7.1. Introduction -- 7.2. Effects of CuO NPs on plants and influence of assay conditions -- 7.3. Comparison of the effects of CuO microparticles and Cu ion versus CuO NPs -- 7.4. Toxicity mechanisms of CuO NPs in plants -- 7.5. Conclusions -- 8. TiO2 NPs -- 8.1. Introduction -- 8.2. Effects of TiO2 NPs on plants and the influence of assay conditions -- 8.3. Influence of crystalline structure, size and coating on the effects of TiO2 NPs on plants -- 8.4. Comparison of the effects of TiO2 microparticles versus TiO2 NPs -- 8.5. Toxicity mechanisms of TiO2 NPs in plants -- 8.6. Conclusions -- 9. CeO2 NPs -- 9.1. Introduction -- 9.2. Effects of CeO2 NPs on plants and the influence of assay conditions -- 9.3. Influence of size and coating on the effects of CeO2 on plants -- 9.4. Comparison of the effects of CeO2 microparticles and Ce ion versus CeO2 NPs -- 9.5. Toxicity mechanisms of CeO2 NPs in plants -- 9.6. Conclusions -- 10. Future outlook -- References. , Chapter Five: Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system -- 1. Introduction -- 2. How A. cepa acts as a model organism -- 3. Toxicity assessments and discussion -- 3.1. Effects of metal/metal oxide NPs on A. cepa root growth -- 3.2. Determination of cytotoxicity using A. cepa root tip assay -- 3.2.1. Evaluation of cell death by Evans blue staining -- 3.2.2. Estimation of viable cells using TTC -- 3.2.3. Mitotic index (MI), micronucleus (MN), and chromosomal aberration (CA) -- 3.3. DNA damage assessment of A. cepa roots by alkaline comet assay -- 4. Generation of ROS by NPs and estimation of ROS scavenging enzymes activity -- 4.1. Generation of intracellular ROS by NPs -- 4.1.1. Determination of superoxide (O2-.) -- 4.1.2. Determination of hydrogen peroxide (H2O2) -- 4.1.3. Determination of hydroxyl radical (OH) -- 4.2. Estimation of ROS scavenging enzymes -- 5. Estimation of cell membrane damage and intracellular uptake of NPs -- 5.1. Cell membrane damage by lipid peroxidation analysis -- 5.2. Bio-uptake of NPs -- 6. Conclusion -- References -- Chapter Six: Phytotoxicity of silver nanoparticles and defence mechanisms -- 1. Introduction -- 2. Uptake and accumulation -- 3. Effects on germination, growth, morphology and ultrastructure -- 3.1. Effects on seed germination and plant growth -- 3.2. Effects on morphology and ultrastructure -- 4. Induction of oxidative stress -- 5. Effects on photosynthesis -- 6. Changes in protein expression -- 7. Conclusion -- Acknowledgements -- References -- Chapter Seven: Genome-wide alterations of epigenomic landscape in plants by engineered nanomaterial toxicants -- 1. Introduction -- 2. Epigenetic modifications in plants -- 2.1. DNA methylation in plants -- 2.1.1. Maintenance of DNA methylation -- 2.1.2. De novo DNA methylation. , 2.1.3. Active dynamics of DNA methylation and demethylation -- 2.1.4. Biological impacts of DNA methylation and demethylation events -- 2.1.4.1. Gene expression and function -- 2.1.4.2. Silencing of transposons -- 2.1.4.3. Chromosomal interactions -- 2.1.4.4. Plant growth and development -- 2.1.4.5. Response to the environmental stress -- 2.2. Histone modifications in plants -- 2.2.1. H3K4-methylations -- 2.2.2. H3K27 tri-methylations -- 2.2.3. H3K9 di-methylation -- 3. Nanomaterial and nanoparticle toxicity -- 4. Epigenetic aberrations and responses in plants due to oxidative stresses -- 4.1. DNA methylation due to stress responses -- 4.2. Histone modifications due to stress responses -- 4.3. RNA directed DNA methylation due to stress responses -- 5. Nanoparticle stress on plant-epigenetic changes -- 5.1. Effect of nanoparticle stress on transgenerational changes -- 5.2. Effect of nanoparticle stress on DNA methylation -- 5.3. Effect of nanoparticle stress on histone modifications -- 6. Future perspective and conclusion -- Conflict of interest -- References -- Chapter Eight: Nanomaterials as therapeutic and diagnostic tool for controlling plant diseases -- 1. Introduction -- 2. Types of nanomaterials used for controlling plant diseases -- 2.1. Nanosilver -- 2.2. Nanocopper -- 2.3. Metal oxide nanoparticles -- 2.4. Other categories of nanoparticles and nanoformulations -- 3. Smart delivery systems -- 4. Nanobiosensors -- 5. Safety concerns and possible toxic effects caused by use of nanomaterials -- 6. Conclusions -- References -- Further reading -- Chapter Nine: Agrochemicals from nanomaterials-Synthesis, mechanisms of biochemical activities and applications -- 1. Introduction -- 2. Nanotechnology in agriculture -- 2.1. Nanofertilizer -- 2.1.1. Development of nanofertilizers -- 2.1.2. Mechanisms of biochemical activities. , 2.1.3. Applications of nanofertilizers -- 2.2. Nanopesticide -- 2.2.1. Development of nanopesticides -- 2.2.2. Biochemical activities -- 2.2.3. Applications of nanopesticides -- 3. Conclusion and future scope -- References -- Chapter Ten: Capturing thematic intervention of nanotechnology in agriculture sector: A scientometric approach -- 1. Introduction -- 2. Smart monitoring technologies -- 2.1. Nanofertilizers and nanopesticides -- 2.2. Carbon nanotubes (CNTs) -- 2.3. Nanoencapsulation -- 3. Publication analysis -- 3.1. United States -- 3.2. China -- 3.3. India -- 4. Collaboration analysis -- 5. Analysis of USA top three institutes -- 6. Analysis of China top three institutes -- 7. Analysis of India top three institutes -- 7.1. Patent analysis -- 7.2. Chinese patent analysis -- 7.3. Indian patents -- 8. Few patented technologies description -- 9. Conclusion -- 10. Identification of gaps and obstacles -- References -- Index -- Back Cover.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Plants-Effect of stress on-Molecular aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (344 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128213216
    Serie: Issn Series
    DDC: 571.742
    Sprache: Englisch
    Anmerkung: Front Cover -- Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability -- Copyright -- Contents -- Contributors to volume 87 -- About the editors -- Preface -- Chapter One: Environmental application of nanomaterials: A promise to sustainable future -- 1. Introduction to nano-technology: Historical background and current trends in application -- 1.1. History of nanotechnology -- 1.2. Current trends in nanotechnology -- 2. Types of engineered nanomaterial -- 3. Environmental application of ENM -- 3.1. Medical application of nanoparticles -- 3.1.1. Disease treatment -- 3.1.2. Bio-analysis -- 3.1.3. Drug delivery -- 3.2. Application of nanoparticles in electronics and information technology -- 3.2.1. Nanotechnology to harvest renewable energy -- 3.2.2. Solar energy -- 3.2.3. Wind energy -- 3.3. Usage in personal care products -- 3.3.1. Composition and formulation of NP-cosmeceuticals -- 3.3.1.1. Nanocarriers in cosmetics -- 3.3.1.1.1. Metal oxide nanomaterials -- 3.3.1.1.2. Organic nanocarriers -- 3.4. Role of nanotechnology in agriculture -- 3.4.1. The development of nano bio-sensors for precision in agriculture -- 3.4.2. Direct usage of NP´s -- 3.4.3. Smart delivery system of NP´s in plant -- 3.4.3.1. Fertilizer industry -- 3.4.3.2. Pesticide industry -- 3.5. Application of nanotechnology in water purification -- 3.5.1. Process involved in water purification in relation to NPs -- 3.5.2. Composition/working-based classification of nanoparticles for water treatment -- 3.5.2.1. Magnetic nanoparticles -- 3.5.2.2. Carbon-based nanotubes and nano enhanced membranes -- 3.5.2.3. Nanocellulose-based membranes for water purification -- 3.5.2.4. Metal and metal oxide NPs in water treatment and purification -- 3.5.3. Effectiveness and limitations -- 3.6. Application of nanomaterials in food safety: From field to dining plate. , 3.6.1. Nanotechnology for advance food packaging -- 3.6.2. Barriers to nanotechnology in food industry -- 4. Critical version of nanotechnology with reference to eco-toxicology -- 4.1. Inspect present to build our future -- 5. Future prospects of nanotechnology -- References -- Further reading -- Chapter Two: Plant-nanoparticle interactions: Mechanisms, effects, and approaches -- 1. Introduction -- 2. Nanoparticle uptake dynamics and mechanism -- 3. Biological effect and impact -- 4. Next generation approaches for toxicity studies: Perspective on omics-based tools -- 5. Applications of nanoparticles in plants for beneficial purposes -- 6. Conclusion and future prospects -- References -- Chapter Three: A general overview on application of nanoparticles in agriculture and plant science -- 1. Nanobiotechnology -- 2. Production of enzymes with nano-specific properties -- 3. Biological nano-sensors -- 4. Application of nanoparticles in environmental monitoring and diagnosis of pathogens -- 5. Application of nanotechnology in food industry -- 6. Application of nanotechnology in animal science -- 7. Role of nanotechnology in irrigation -- 8. Application of nanotechnology in agricultural machinery -- 9. Nanotechnology in agriculture and horticulture -- 10. The effect of nanoparticles on photosynthesis -- 11. Effect of nanotechnology on the food chain -- 12. Bioactive nano-sensors are used to prepare biological materials that can react quickly with target molecules -- 13. Nano-fertilizers and nano-insecticides -- 14. Converting agricultural wastes to nanoparticles -- 15. Conclusions -- References -- Chapter Four: Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants -- 1. Introduction -- 2. Nanomaterials uptake by plants -- 3. Effects of ENMs exposure on plants physiological characteristics -- 4. Biochemical basis of ENMs toxicity. , 5. Plant responses towards nanoparticle toxicity -- 6. Conclusion -- Acknowledgements -- References -- Chapter Five: Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging -- 1. Introduction -- 1.1. Nanoparticles to engineered nanomaterials -- 1.2. Types of engineered nanomaterials -- 2. Applications of engineered nanomaterials in plants -- 2.1. ENMs as bio-carriers -- 2.2. ENMs as biosensors -- 2.2.1. Nano-mechanical biosensors -- 2.2.2. Biochips -- 2.2.3. PEBBLE nanosensors -- 2.2.4. Nano-biosensors for detection of plant metabolites -- 2.2.5. Nano-biosensors for detection antibacterial agents -- 2.2.6. Nano-biosensors for detection of plant pathogens -- 2.2.7. Detection of heavy metal contamination -- 2.3. ENMs as bio-imaging agents -- 3. Designing ENMs for plants -- 3.1. ENM uptake and translocation in plant cells -- 3.2. Functionalization of the ENMs -- 4. Phytotoxicity and engineered nanomaterials -- 5. Conclusion and future prospects -- References -- Chapter Six: Antioxidant role of nanoparticles for enhancing ecological performance of plant system -- 1. Introduction -- 2. Nanoparticles utility in plant science -- 3. Nanoparticles and their interaction with plant system -- 4. Antioxidative defence systems in plants -- 4.1. Impact of oxidative stress on ecological performance -- 4.2. Interaction of nanoparticles with antioxidant systems -- 4.3. Nanoparticles acting as antioxidants -- 5. Summary -- References -- Further reading -- Chapter Seven: Toxicity assessment of metal oxide nanoparticles on terrestrial plants -- 1. Nanoparticles -- 2. Production, applications and environmental concern -- 3. Sink of nanoparticles -- 4. Influence of nanoparticles on plants -- 5. Toxicity mechanism and effects on plants -- 6. Available techniques to detect presence of nanoparticles -- 7. Conclusion and future prospects -- Acknowledgements. , References -- Chapter Eight: Cerium oxide nanoparticles: Advances in synthesis, prospects and application in agro-ecosystem -- 1. Introduction -- 1.1. Cerium oxide nanoparticles (CeO2 NPs) sources in environment -- 1.1.1. Natural sources of CeO2 NPs -- 1.1.2. Anthropogenic sources of CeO2 NPs -- 2. Synthesis and characterization of CeO2 NPs -- 2.1. Green synthesis of CeO2 NPs -- 2.2. Nutrient mediated synthesis of CeO2 NPs -- 2.3. Chemical synthesis of CeO2 NPs -- 2.4. Characterization of CeO2 NPs -- 2.5. X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) -- 2.5.1. XRD -- 2.6. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TE ... -- 3. Environmental application of CeO2 NPs -- 3.1. Biomedical application -- 3.1.1. Nanoceria and disease control -- 3.1.2. Industrial applications -- 3.1.3. Agriculture application -- 4. Fate of cerium oxide nanoparticles in soil -- 4.1. Solubility and transport in soil -- 4.2. Adsorption and coagulation of CeO2 NPs in soil -- 5. Fate of cerium oxide nanoparticles in plants -- 5.1. Uptake by plants -- 5.2. Transport in plants -- 5.3. Assimilation and transformation in plants -- 5.4. Biochemical interactions within plant matrices -- 5.5. Combating salinity and heavy metal stresses -- 6. Critics on the eco toxicological impacts of CeO2 NPs -- 6.1. Cellular specific toxicity of CeO2 NPs in humans and animals -- 6.2. CeO2 NPs negative influence on plants -- 7. Prospects -- 8. Summary -- References -- Further reading -- Chapter Nine: ZnO nanoparticle with promising antimicrobial and antiproliferation synergistic properties -- 1. Introduction -- 2. Antibacterial synergism -- 3. Synergistic effect of ZnO NPs in cancer -- 4. Conclusion -- Acknowledgement -- References. , Chapter Ten: Biologically synthesized nanomaterials and their antimicrobial potentials -- 1. Introduction -- 2. Biological synthesis of nanoparticles and its associated advantages -- 2.1. Nanoparticles synthesis using plants -- 2.2. Nanoparticles synthesis using microorganisms -- 3. Characterization of biologically synthesized nanoparticles -- 3.1. Spectroscopic techniques -- 3.1.1. UV-Vis spectrophotometry -- 3.1.2. Infrared (IR) spectroscopy -- 3.1.3. Fourier transform infrared (FTIR) spectroscopy -- 3.2. Microscopic techniques -- 3.2.1. Scanning electron microscopy (SEM) -- 3.2.2. Energy dispersive X-ray analysis -- 3.2.3. Transmission electron microscopy (TEM) -- 3.2.4. Scanning probe microscopes/scanning tunnelling microscope (SPM/STM) -- 3.3. Diffraction techniques -- 3.3.1. X-ray diffraction (XRD) -- 3.3.2. Dynamic light scattering (DLS) -- 3.3.3. Zeta potential measurement -- 4. Antimicrobial potential of biologically synthesized nanomaterials -- 4.1. Silver nanoparticles -- 4.2. Gold nanoparticles -- 4.3. Copper nanoparticles -- 4.4. Titanium and zinc nanoparticles -- References -- Chapter Eleven: Emerging plant-based anti-cancer green nanomaterials in present scenario -- 1. Introduction -- 1.1. General introduction about cancer -- 1.2. Cancer management -- 1.3. Role of nanomaterial´s to combat cancer -- 2. Role of phytochemicals to the synthesis of nano-biomaterials -- 2.1. Silver nanoparticles (AgNPs) -- 2.2. Gold nanoparticles (AuNPs) -- 2.3. Iron oxide nanoparticles -- 2.4. Titanium oxide nanoparticles -- 2.5. Cerium oxide nanoparticles -- 2.6. Bimetallic and nano-composite nanoparticles -- 2.6.1. Nano-composites -- 3. Parameters influencing the activity of nanomaterials -- 4. Emerging potential plant-based anti-cancer nanomaterials -- 5. Anti-cancer mechanisms of action of nanomaterials. , 6. Future prospects of nanomaterials for cancer nanomedicine.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Schlagwort(e): Drugs. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (260 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443132001
    Serie: Issn Series
    DDC: 543
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1520-4804
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 67 (1998), S. 99-134 
    ISSN: 0066-4154
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Chemie und Pharmazie , Biologie
    Notizen: Abstract Synthetic oligonucleotide analogs have greatly aided our understanding of several biochemical processes. Efficient solid-phase and enzyme-assisted synthetic methods and the availability of modified base analogs have added to the utility of such oligonucleotides. In this review, we discuss the applications of synthetic oligonucleotides that contain backbone, base, and sugar modifications to investigate the mechanism and stereochemical aspects of biochemical reactions. We also discuss interference mapping of nucleic acid-protein interactions; spectroscopic analysis of biochemical reactions and nucleic acid structures; and nucleic acid cross-linking studies. The automation of oligonucleotide synthesis, the development of versatile phosphoramidite reagents, and efficient scale-up have expanded the application of modified oligonucleotides to diverse areas of fundamental and applied biological research. Numerous reports have covered oligonucleotides for which modifications have been made of the phosphodiester backbone, of the purine and pyrimidine heterocyclic bases, and of the sugar moiety; these modifications serve as structural and mechanistic probes. In this chapter, we review the range, scope, and practical utility of such chemically modified oligonucleotides. Because of space limitations, we discuss only those oligonucleotides that contain phosphate and phosphate analogs as internucleotidic linkages.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2014-12-11
    Beschreibung: In this study genome-wide di-methylated H3K4 (H3K4me2) and tri-methylated H3K27 (H3K27me3) modification profiles were analyzed in spermatozoa of buffalo bulls having wide fertility differences. The custom designed 4X180K buffalo ( Bubalus bubalis ) ChIP-on-chip array was fabricated by employing array-based sequential hybridization using bovine and buffalo genomic DNA for comparative hybridization. The buffalo specific array developed had 177440 features assembled from Coding sequences, Promoter and CpG regions comprising 2967 unique genes. A total of 84 genes for H3K4me2 and 80 genes for H3K27me3 were found differentially enriched in mature sperm of high and sub-fertile buffalo bulls. Gene Ontology analysis of these genes revealed their association with different cellular functions and biological processes. Genes identified as differentially enriched between high and sub-fertile bulls were found to be involved in the processes of germ cell development, spermatogenesis and embryonic development. This study presents the first genome-wide H3K4me2 and H3K27me3 profiling of buffalo bull sperm. Results provide a list of specific genes which could be made responsible for differential bull fertility. This article is protected by copyright. All rights reserved
    Digitale ISSN: 0091-7419
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Publiziert von Wiley-Blackwell
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...