GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha−1 yr−1 above background displayed consistently elevated NO fluxes (100–200 µg N m−2 h−1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high-N plots and 8.3% of inputs to the Pine low-N plot. Nitrous oxide fluxes in the N-treated plots were generally 〈 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and 〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m101" location="equation/GCB_0591_m101.gif"/〉 concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg−1) of nitrite (〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m102" location="equation/GCB_0591_m102.gif"/〉) were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of 〈inlineGraphic alt="inline image" href="urn:x-wiley:13541013:GCB0591:GCB_0591_m103" location="equation/GCB_0591_m103.gif"/〉 (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Nitrogen retention in soil organic matter (SOM) is a key process influencing the accumulation and loss of N in forest ecosystems, but the rates and mechanisms of inorganic N retention in soils are not well understood. The primary objectives of this study were to compare ammonium (NH4+), nitrite (NO2−), and nitrate (NO3−) immobilization among soils developed under different tree species in the Catskill Mountains of New York State, and to determine the relative roles of biotic or abiotic processes in soil N retention. A laboratory experiment was performed, where 15N was added as NH4+, NO2−, or NO3− to live and mercury-treated O horizon soils from three tree species (American beech, northern red oak, sugar maple), and 15N recoveries were determined in the SOM pool. Mercuric chloride was used to treat soils as this chemical inhibits microbial metabolism without significantly altering the chemistry of SOM. The recovery of 15N in SOM was almost always greater for NH4+ (mean 20%) and NO2− (47%) than for NO3− (10%). Ammonium immobilization occurred primarily by biotic processes, with mean recoveries in live soils increasing from 9% at 15 min to 53% after 28 days of incubation. The incorporation of NO2− into SOM occurred rapidly (〈15 min) via abiotic processes. Abiotic immobilization of NO2− (mean recovery 58%) was significantly greater than abiotic immobilization of NH4+ (7%) or NO3− (7%). The incorporation of NO2− into SOM did not vary significantly among tree species, so this mechanism likely does not contribute to differences in soil NO3− dynamics among species. As over 30% of the 15NO2− label was recovered in SOM within 15 min in live soils, and the products of NO2− incorporation into SOM remained relatively stable throughout the 28-day incubation, our results suggest that NO2− incorporation into SOM may be an important mechanism of N retention in forest soils. The importance of NO2− immobilization for N retention in field soils, however, will depend on the competition between incorporation into SOM and nitrification for transiently available NO2−. Further research is required to determine the importance of this process in field environments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Laboratory experiments were conducted with three California agricultural soils to examine substrate and process controls over temporal variability of NO and N2O production during nitrification, and to quantify the kinetics of HNO2-mediated chemical reactions. Gross NO production rates were highly correlated (r2 = 0.93–0.97) with calculated concentrations of HNO2, which were shown to originate from autotrophic microbial oxidation of NH4 + to NO2 − Production of NO was not correlated with NH4 + or NO3–, or with the overall nitrification rate. Distinct periods of high NO2– accumulation occurred below critical pH values in each soil, apparently due to inhibition of microbial NO2– oxidation. Data suggest that even during periods of relatively low NO2– accumulation and rapid overall nitrification, HNO2-mediated reactions may have been the primary source of NO. Rate coefficients (kPNO) relating NO production to HNO2 concentrations were determined for sterile (λ-irradiated) soils, and were similar to kPNO values in 2 of 3 nonsterile soils undergoing nitrification. Production of N2O was correlated with HNO2 (r2 = 0.88–0.99) in sterile soils, and with NO2– and NO3– (R2 = 0.72–0.91) in nonsterile soils. Experiments using 15N confirmed that dissimilatory NO3– reduction contributed to N2O production even under primarily aerobic conditions. Sterile kPNO and kPN2O values were correlated (r2 = 0.90 and 0.82) with soil organic matter content. Overall, the results demonstrate that both steps of the nitrification sequence, together with abiotic reactions involving NO2–/HNO2 need to be considered in developing improved models of NO and N2O emissions from soils.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...