GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-10
    Description: Lymphocytes enter tissues from blood vessels through a well-characterized three-step process of extravasation. To our knowledge, nonvascular routes of lymphocyte entry have not been described. In this article, we report that Ag-experienced CD8 T cells in mice recirculate from blood through the peritoneal cavity. In the event of infection, Ag-experienced CD8 T cell subsets adhered to visceral organs, indicating potential transcapsular immunosurveillance. Focusing on the male genital tract (MGT), we observed Ag-experienced CD8 T cell migration from the peritoneal cavity directly to the infected MGT across the capsule, which was dependent on the extracellular matrix receptor CD44. We also observed that, following clearance of infection, the MGT retained functional resident memory CD8 T cells. These data suggest that recirculation through body cavities may provide T cells with opportunities for broad immunosurveillance and potential nonvascular mechanisms of entry.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-30
    Description: The pathogen recognition theory dictates that, upon viral infection, the innate immune system first detects microbial products and then responds by providing instructions to adaptive CD8 T cells. Here, we show in mice that tissue resident memory CD8 T cells (T(RM) cells), non-recirculating cells located at common sites of infection, can achieve near-sterilizing immunity against viral infections by reversing this flow of information. Upon antigen resensitization within the mouse female reproductive mucosae, CD8(+) T(RM) cells secrete cytokines that trigger rapid adaptive and innate immune responses, including local humoral responses, maturation of local dendritic cells, and activation of natural killer cells. This provided near-sterilizing immunity against an antigenically unrelated viral infection. Thus, CD8(+) T(RM) cells rapidly trigger an antiviral state by amplifying receptor-derived signals from previously encountered pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449618/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449618/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schenkel, Jason M -- Fraser, Kathryn A -- Beura, Lalit K -- Pauken, Kristen E -- Vezys, Vaiva -- Masopust, David -- DP2 OD006467/OD/NIH HHS/ -- DP2-OD-006467/OD/NIH HHS/ -- F30 DK100159/DK/NIDDK NIH HHS/ -- F30DK100159/DK/NIDDK NIH HHS/ -- R01 AI084913/AI/NIAID NIH HHS/ -- R01AI084913/AI/NIAID NIH HHS/ -- T32 AI007313/AI/NIAID NIH HHS/ -- T32AI007313/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):98-101. doi: 10.1126/science.1254536. Epub 2014 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA. Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA. ; Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA. Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA. masopust@umn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170049" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity/*immunology ; Animals ; Antigens, Viral/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Female ; Immunity, Humoral/immunology ; Immunity, Innate/*immunology ; *Immunologic Memory ; Interferon-gamma/immunology ; Mice ; Mice, Inbred C57BL ; Mucous Membrane/immunology/virology ; Vascular Cell Adhesion Molecule-1/immunology ; Virus Diseases/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masopust, David -- Vezys, Vaiva -- England -- Nature. 2012 Oct 4;490(7418):41-3. doi: 10.1038/490041a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23038460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology ; Clostridium/*immunology ; Flagellin/immunology ; Gastrointestinal Tract/*immunology/*microbiology ; Humans ; Immune Tolerance ; Immunity, Mucosal/*immunology ; Immunologic Memory ; Inflammatory Bowel Diseases/immunology/microbiology/pathology ; Mice ; Toxoplasma/immunology/pathogenicity ; Toxoplasmosis/*immunology/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-21
    Description: Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beura, Lalit K -- Hamilton, Sara E -- Bi, Kevin -- Schenkel, Jason M -- Odumade, Oludare A -- Casey, Kerry A -- Thompson, Emily A -- Fraser, Kathryn A -- Rosato, Pamela C -- Filali-Mouhim, Ali -- Sekaly, Rafick P -- Jenkins, Marc K -- Vezys, Vaiva -- Haining, W Nicholas -- Jameson, Stephen C -- Masopust, David -- 1R01AI111671/AI/NIAID NIH HHS/ -- R01 AI075168/AI/NIAID NIH HHS/ -- R01 AI084913/AI/NIAID NIH HHS/ -- R01 AI111671/AI/NIAID NIH HHS/ -- R01 AI116678/AI/NIAID NIH HHS/ -- R01AI075168/AI/NIAID NIH HHS/ -- R01AI084913/AI/NIAID NIH HHS/ -- R01AI116678/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Apr 28;532(7600):512-6. doi: 10.1038/nature17655. Epub 2016 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55414, USA. ; Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55414, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology and Oncology, Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27096360" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animal Husbandry/*methods ; Animals ; Animals, Laboratory/*immunology ; Animals, Wild/*immunology ; Cell Differentiation ; *Environment ; Environmental Exposure ; Female ; Humans ; Immune System/*immunology ; Immunity/*immunology ; Immunity, Innate/immunology ; Immunologic Memory ; Infant, Newborn ; Male ; Mice ; *Models, Animal ; Phenotype ; Specific Pathogen-Free Organisms ; T-Lymphocytes/cytology/immunology ; Virus Diseases/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-05
    Description: Programmed death-1 (PD-1) promotes T cell tolerance. Despite therapeutically targeting this pathway for chronic infections and tumors, little is known about how different T cell subsets are affected during blockade. We examined PD-1/PD ligand 1 (PD-L1) regulation of self-antigen–specific CD4 and CD8 T cells in autoimmune-susceptible models. PD-L1 blockade increased insulin-specific effector CD4 T cells in type 1 diabetes. However, anergic islet-specific CD4 T cells were resistant to PD-L1 blockade. Additionally, PD-L1 was critical for induction, but not maintenance, of CD8 T cell intestinal tolerance. PD-L1 blockade enhanced functionality of effector T cells, whereas established tolerant or anergic T cells were not dependent on PD-1/PD-L1 signaling to remain unresponsive. This highlights the existence of Ag-experienced T cell subsets that do not rely on PD-1/PD-L1 regulation. These findings illustrate how positive treatment outcomes and autoimmunity development during PD-1/PD-L1 inhibition are linked to the differentiation state of a T cell.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-21
    Description: Checkpoint blockade-based immunotherapies are effective in cancers with high numbers of nonsynonymous mutations. In contrast, current paradigms suggest that such approaches will be ineffective in cancers with few nonsynonymous mutations. To examine this issue, we made use of a murine model of BCR-ABL + B-lineage acute lymphoblastic leukemia. Using a principal component analysis, we found that robust MHC class II expression, coupled with appropriate costimulation, correlated with lower leukemic burden. We next assessed whether checkpoint blockade or therapeutic vaccination could improve survival in mice with pre-established leukemia. Consistent with the low mutation load in our leukemia model, we found that checkpoint blockade alone had only modest effects on survival. In contrast, robust heterologous vaccination with a peptide derived from the BCR-ABL fusion (BAp), a key driver mutation, generated a small population of mice that survived long-term. Checkpoint blockade strongly synergized with heterologous vaccination to enhance overall survival in mice with leukemia. Enhanced survival did not correlate with numbers of BAp:I-A b –specific T cells, but rather with increased expression of IL-10, IL-17, and granzyme B and decreased expression of programmed death 1 on these cells. Our findings demonstrate that vaccination to key driver mutations cooperates with checkpoint blockade and allows for immune control of cancers with low nonsynonymous mutation loads.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-19
    Description: IL-15 regulates central and effector memory CD8 T cell (T CM and T EM , respectively) homeostatic proliferation, maintenance, and longevity. Consequently, IL-15 availability hypothetically defines the carrying capacity for total memory CD8 T cells within the host. In conflict with this hypothesis, previous observations demonstrated that boosting generates preternaturally abundant T EM that increases the total quantity of memory CD8 T cells in mice. In this article, we provide a potential mechanistic explanation by reporting that boosted circulating T EM do not require IL-15 for maintenance. We also investigated tissue-resident memory CD8 T cells (T RM ), which protect nonlymphoid tissues from reinfection. We observed up to a 50-fold increase in the total magnitude of T RM in mouse mucosal tissues after boosting, suggesting that the memory T cell capacity in tissues is flexible and that T RM may not be under the same homeostatic regulation as primary central memory CD8 T cells and T EM . Further analysis identified distinct T RM populations that depended on IL-15 for homeostatic proliferation and survival, depended on IL-15 for homeostatic proliferation but not for survival, or did not depend on IL-15 for either process. These observations on the numerical regulation of T cell memory indicate that there may be significant heterogeneity among distinct T RM populations and also argue against the common perception that developing vaccines that confer protection by establishing abundant T EM and T RM will necessarily erode immunity to previously encountered pathogens as the result of competition for IL-15.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-19
    Description: Developing vaccine strategies to generate high numbers of Ag-specific CD8 T cells may be necessary for protection against recalcitrant pathogens. Heterologous prime-boost-boost immunization has been shown to result in large quantities of functional memory CD8 T cells with protective capacities and long-term stability. Completing the serial immunization steps for heterologous prime-boost-boost can be lengthy, leaving the host vulnerable for an extensive period of time during the vaccination process. We show in this study that shortening the intervals between boosting events to 2 wk results in high numbers of functional and protective Ag-specific CD8 T cells. This protection is comparable to that achieved with long-term boosting intervals. Short-boosted Ag-specific CD8 T cells display a canonical memory T cell signature associated with long-lived memory and have identical proliferative potential to long-boosted T cells Both populations robustly respond to antigenic re-exposure. Despite this, short-boosted Ag-specific CD8 T cells continue to contract gradually over time, which correlates to metabolic differences between short- and long-boosted CD8 T cells at early memory time points. Our studies indicate that shortening the interval between boosts can yield abundant, functional Ag-specific CD8 T cells that are poised for immediate protection; however, this is at the expense of forming stable long-term memory.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-12-28
    Description: CD4 T cells play a critical role in regulating CD8 T-cell responses during chronic viral infection. Several studies in animal models and humans have shown that the absence of CD4 T-cell help results in severe dysfunction of virus-specific CD8 T cells. However, whether function can be restored in already exhausted CD8 T cells by providing CD4 T-cell help at a later time remains unexplored. In this study, we used a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection to address this question. Adoptive transfer of LCMV-specific CD4 T cells into chronically infected mice restored proliferation and cytokine production by exhausted virus-specific CD8 T cells and reduced viral burden. Although the transferred CD4 T cells were able to enhance function in exhausted CD8 T cells, these CD4 T cells expressed high levels of the programmed cell death (PD)-1 inhibitory receptor. Blockade of the PD-1 pathway increased the ability of transferred LCMV-specific CD4 T cells to produce effector cytokines, improved rescue of exhausted CD8 T cells, and resulted in a striking reduction in viral load. These results suggest that CD4 T-cell immunotherapy alone or in conjunction with blockade of inhibitory receptors may be a promising approach for treating CD8 T-cell dysfunction in chronic infections and cancer.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-16
    Description: Mucosal tissues are subject to frequent pathogen exposure and are major sites for transmission of infectious disease. CD8 T cells play a critical role in controlling mucosa-acquired infections even though their migration into mucosal tissues is tightly regulated. The mechanisms and signals that control the formation of tissue-resident memory CD8 T cells are poorly understood; however, one key regulator of memory CD8 T cell differentiation, mammalian target of rapamycin kinase, can be inhibited by rapamycin. We report that, despite enhancing the formation of memory CD8 T cells in secondary lymphoid tissues, rapamycin inhibits the formation of resident memory CD8 T cells in the intestinal and vaginal mucosa. The ability of rapamycin to block the formation of functional resident CD8 T cells in mucosal tissues protected mice from a model of CD8 T cell–mediated lethal intestinal autoimmunity. These findings demonstrate an opposing role for mammalian target of rapamycin in the formation of resident versus nonresident CD8 T cell immunity.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...