GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology (2020): jeb.220830, doi: 10.1242/jeb.220830.
    Description: Calanoid copepods, depending on feeding strategy, have different behavioral and biological controls on their movements, thereby responding differently to environmental conditions such as changes in seawater viscosity. To understand how copepod responses to environmental conditions are mediated through physical, physiological, and/or behavioral pathways, we used high-speed microvideography to compare two copepod species, Acartia hudsonica and Parvocalanus crassirostris, under different temperature, viscosity, and dietary conditions. Acartia hudsonica exhibited “sink and wait” feeding behavior and typically responded to changes in seawater viscosity; increased seawater viscosity reduced particle-capture behavior and decreased the size of the feeding current. In contrast, P. crassirostris continuously swam and did not show any behavioral or physical responses to changes in viscosity. Both species showed a physiological response to temperature, with reduced appendage beating frequency at cold temperatures, but this did not generally translate into effects on swimming speed, feeding flux, or active time. Both copepod species swam slower when feeding on diatom rather than dinoflagellate prey, showing that prey type mediates copepod behavior. These results differentiate species-specific behaviors and responses to environmental conditions, which may lead to better understanding of niche separation and latitudinal patterns in copepod feeding and movement strategies.
    Description: This study was supported by the National Science Foundation [OCE1634024 to N.F.; OCE-1433979 and OCE-1559062 to H.J.]; and by Stony Brook University [Graduate Council Fellowship and Turner Fellowship to A.S.T].
    Description: 2021-06-11
    Keywords: Copepods ; Zooplankton ; Seawater viscosity ; Feeding mechanism ; Micro-particle tracking velocimetry (µPTV)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...