GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2012-09-01
    Description: Fissure ridge travertines grown from geothermal springs of Denizli Basin, southwestern Turkey, are investigated through stratigraphic, structural, geochemical, and geochronological methods, with the aim of understanding the growth of these elongate mound-shaped structures. Two main types of travertine deposits are recognized: (1) bedded travertines, which grew as flowstone on sloping surfaces and form the bulk of fissure ridges, and (2) banded travertines, which grew as veins within the bedded travertine chiefly along its central feeding conduit. Stratigraphic and structural observations shed light on the bedded-banded travertine relationships, where the banded features grew through successive accretion phases, crosscutting the bedded travertine or forming sill-like structures. The bedded and banded travertines alternated their growth, as demonstrated by complicated crosscutting relationships and by the upward suture, in places, of banded travertine by bedded travertine that was, in turn, crosscut by younger banded travertine. The bedded travertine is often tilted away from the central axis of the fissure ridge, thus leaving more room for the central banded travertine to form. U-series ages confirm the bedded-banded travertine temporal relationships and show that the growth of the studied fissure ridges lasted up to several tens of thousands of years during Quaternary time. The banded travertine was deposited mainly during cold events, possibly in coincidence with seismic events that might have triggered the outflow of deep geothermal fluids. C and O stable isotope and rare earth element data indicate a shallow feeding circuit for the studied structures with a fluid component deriving from a deeper geothermal circuit. A crack-and-seal mechanism of fissure ridge growth is proposed, modulated by the interplay of local and regional influencing factors and mechanisms such as geothermal fluid discharge, paleoclimate, tectonics, and the progressive tilting of bedded travertine limbs over a soft substratum creating the necessary space for the central veins to grow.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: To better understand the mechanisms leading to different radon background levels in volcanic settings, we have performed two long-term deformation experiments of 16 days using a real-time setup that enables us to monitor any variation of radon activity concentration during rock compression. Our measurements demonstrate that, in the case of highly porous volcanic rocks, the emanating power of the substrate changes as a function of the volcanic stress conditions. Constant magmatic pressures, such as those observed during dike intrusions and hydrothermal fluid injections, can result in pervasive pore collapse that is mirrored by a significant radon decrease until a constant emanation is achieved. Conversely, repeated cycles of stress due to, for example, volcano inflation/deflation cycles, cause a progressive radon increase a few days (but even weeks and months) before rupture. After rock failure, however, the formation of new emanation surfaces leads to a substantial increase of the radon signal. Our results suggest that surface deformation in tectonic and volcanic settings, such as inflation/ deflation or constant magmatic pressures, have important repercussions on the emanating power of volcanic substrates.
    Description: Published
    Description: 751
    Description: 2R. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Radon monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Radon and thoron emissions from lithophysae‐rich tuff under increasing deformation are measured to determine how mechanical damage affects gas emission levels in tuffs. Mechanical properties of rocks under stresses should be carefully considered to properly interpret data from geochemical field monitoring. Two samples are uniaxially loaded up to failure, while two others are unloaded at the end of the elastic phase, in order to achieve the highest compaction of existing pores. Changes in the porosity of deformed samples are evidenced by helium pycnometer and microscopy analyses. Radon and thoron exhalation rates are measured on groups of two samples by alpha spectrometer technique. Results show that tuff samples are characterised by a dual porosity consisting of a macroporosity, given by isolated large pores with sizes from mm‐ up to cm‐scale and a microporosity ranging between microns to hundreds of microns. At the end of the elastic phase pervasive pore collapse is observed, due to the closure of the cm‐scale macropores. This is mirrored by a significant decrease of radon and thoron release. After failure, a further reduction of porosity in the rock adjacent to the fault planes is observed due to extensive closure of both macropores and micropores. At this stage radon and thoron emissions increase. The formation of new exhaling surfaces is the main carrier of the bulk increase of radon and thoron exhalations, strongly prevailing over the densification carried out from the compaction mechanisms. In terms of volcanic hazard, negative anomalies in radon emissions should be considered as indicators of forthcoming ruptures. Key words: radon and thoron exhalation, tuff deformation, seismic precursor.
    Description: Published
    Description: L05305
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Radon ; Rock deformation ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: Radon anomalies are commonly observed prior to dynamic failure in the crust and are interpreted as cracking of the medium, thus attracting considerable attention in understanding the precursory phenomena of earthquakes and volcanic activity. In this study we have compared the starting radon emissions from low porosity crystalline lava (phonolite) samples with those from damaged and failed samples. The damaged sample was loaded up to just beyond the end of the linear elastic phase, as evidenced by the output of AE energy, the increase in total porosity and a decrease in P‐wave and S‐wave velocity relative to the intact sample. Whereas, the failed sample showed deformation behaviour characteristically brittle with increasing values of AE output and porosity as the sample approached macroscopic failure. Radon measurements have evidenced that dilatational microcracking of deformed sample produced no significant variation in radon emanation with respect to the intact sample. In contrast, after macroscopic failure, radon emanation drastically increased. Therefore, major finding from this study is that, in the case of low porosity and relatively high strength crystalline lavas, the development of a macroscopic fracture provides new large exhaling surface resulting in a substantial increase in radon emission rate.
    Description: Published
    Description: L14304
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Radon ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: This work was aimed at collecting data to estimating the rate of uplift over several temporal scales. The analysis includes a very short-term analysis (tens of years) of InSAR data, a middle-term analysis of Holocene geological data, and a long-term analysis of Middle-Late Pleistocene geological data. After a preliminary reconnaissance in a large area, all final datasets focus strictly on the area of the Crotone Peninsula. The techniques applied span from Small Baseline Subset Interferometric SAR, to classic geomorphic and stratigraphic analysis aided by radiocarbon and U/Th dating.
    Description: Agreement INGV-DPC 2007-2009 Project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: Crotone ; Calabrian Arc ; InSAR ; U/Th dating ; Radiocarbon dating ; Uplift ; coastal terrace ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Radon gas is the subject of a great deal of research because its concentration builds up into indoor air and the long-term radon exposure is considered the second cause of lung cancer, after smoking. In addition to that, the release of radon from soil is under investigation in active volcanic and seismic areas because radon anomalies are believed to occur before earthquakes and volcanic eruptions. Several papers report results of laboratory experiments on the effects of activity concentration of 222Rn and 220Rn precursors, humidity content and grain size of geological materials over the radon emission. However no correspondent studies have targeted the effect of the temperature on radon release. The present contribution focuses on the influence of temperature, varying from 20 to 60 °C, on 222Rn and 220Rn emission from two volcanic rocks, a tuff and a lava flow. The experimental apparatus consists of a small accumulation chamber coupled to solid-state alpha spectroscopy; it also allows to keep constant the experimental temperatures applied to the rock sample. The effect of ambient temperature on detection efficiency is also investigated. Results show a significant enhancement of radon emissions from rocks with increasing temperature. The results of these experiments suggest that thermal enhancement of radon emission can be used to investigate more precisely the correlation between physical mechanisms determining damage in stressed rocks and radon release, taking advantage of the improved radon emission. Experimental test with a better resolution are the key to interpret radon anomalies preceding earthquakes or volcanic eruption.
    Description: Published
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: reserved
    Keywords: Radon, thermal enhancement ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-03
    Description: Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (〉90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: partially_open
    Keywords: gas hazard ; hydrogen sulfide ; carbon dioxide ; Colli Albani volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-01
    Description: A hazardous gas eruption from two very close shallow boreholes occurred near the Fiumicino International Air- port of Roma (Italy) from August to December 2013. The erupted gas was mostly CO2 of deep origin and gas out- put was high and sustained over time reaching values of nearly 20 t day− 1. After 3 months, the gas flux was still above 5 t day− 1 and was only stopped in December 2013 by long and expensive works of closure of the bore- holes. The gas eruption was uncommon as being associated with the building of two mud volcanoes. This style of sustained deep CO2 eruptions contrasts with the more common short-lived eruptions of shallow biogenic methane-dominated gas pockets. In this work, we present the chronology of the event, the results of geological, geochemical, and geophysical monitoring and a numerical modeling. We propose that the August–December 2013 sustained and prolonged event does not relate to the simple degassing of a shallow, isolated pocket of gas. On the contrary, it reflects very specific conditions in a shallow reservoir (hosted in a 10 m thick gravel layer at −40 m within the Tiber river delta deposits), related to the interplay between the total pressure and the fraction of free CO2 initially present, across very narrow value ranges around 0.59 MPa and 0.18, respectively. The coexistence of short-lived and long-lived eruptions from the same reservoir suggest that these conditions are not achieved everywhere in the gas reservoir, despite its homogeneous properties. This consideration implies ei- ther a pressure compartmentalization of the reservoir, or the occurrence of a transient, possibly associated with an impulsive release of gas from greater depths. The involvement of deeper and larger gas reservoirs connected along faults is evidenced by geophysical investigations. This conceptual model bears significant implications for gas hazard studies
    Description: Published
    Description: 119-134
    Description: 6A. Geochimica per l'ambiente
    Description: 7A. Geofisica per il monitoraggio ambientale e geologia medica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-16
    Description: In extending areas undergoing regional tectonic uplift, the persistence of subsidence at a normal-fault hanging-wall depends on the competition between regional and local tectonic effects. When regional uplift exceeds the subsidence of the hanging-wall block, denudation prevails at both the hanging-wall and the foot-wall. When local tectonic subsidence exceeds regional uplift, sedimentation occurs over the hanging-wall block, supplied by foot-wall erosion. We analyzed a PlioceneeQuaternary continental basin, currently crossed by the Tiber River in Italy. The tectono-sedimentary evolution of the basin developed at the hanging-wall of a regional low-angle extensional detachment, the Alto Tiberina Fault, in the axial region of the Northern Apennines of Italy. This area is affected by regional uplift on the order of 0.5e1.0 mm/yr. The present-day activity of the fault is revealed by both microseismicity and geodetic (GPS) data. We investigated the mid- (10e100 ka) and long-term (0.5e3.0 Ma) evolution of the three depocenters by studying the continental Pleistocene succession infilling the basin as well as fluvial terraces and higher paleosurfaces carved into the Pleistocene deposits. By using surficial geologic data and an interpretation of a set of seismic reflection profiles, we show that the three depocenters experienced a fairly similar evolution during the PlioceneeEarly Pleistocene, when a 1000-m-thick continental succession was deposited. On the contrary, geomorphological observations indicate that, at the beginning of the Middle Pleistocene, a switch occurred in the evolution of the three depocenters. In the northernmost Sansepolcro sub-basin, bounding normal faults are active and hanging-wall subsidence outpaces regional uplift. Concurrently, in the Umbertide and Ponte Pattoli subbasins uplift dominates over the hanging-wall subsidence, promoting river incision and exhumation of the Pleistocene deposits. For these two depocenters, by means of terrace-river correlations, we estimate that the incision rate is ~0.3e0.35 mm/yr, suggesting a maximum tectonic subsidence of 0.2 mm/yr. The identification of a heterogeneous uplift pattern along the hanging-wall of the Alto Tiberina Fault, driven by different displacement rates of its fault splays, allowed us to characterize fault segments with different activities and, possibly, different seismic behaviors.
    Description: Published
    Description: 111-132
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Quaternary basin ; normal fault ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-07
    Description: In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central-northern sector of Lazio region) and to faulted and fractured carbonate rocks (central-southern and eastern sectors of the Lazio region). This typical local variability of autocorrelated phenomena can only be taken into account by using local methods for spatial data analysis. The constructed GRP map can be a useful tool to implement radon policies at both the national and local levels, providing critical data for land use and planning purposes.
    Description: Published
    Description: 355-375
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...