GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (45 Seiten = 5 MB) , Graphen
    Edition: Online-Ausgabe 2022
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Understanding the mechanisms driving species biogeography and biodiversity remains a major challenge in phytoplankton ecology. Using a model of two phytoplankton species with a gleaner-opportunist trade-off and competing for light and a limiting nutrient, we show that the diel light cycle may be an essential factor to explain large-scale ecological patterns. When only the seasonal light cycle is considered (control scenario) the model predicts that, independently of the nutrient supply, gleaners should dominate across all latitudes and oppor- tunists can obtain a temporal niche only at high latitudes. However, the diel light cycle makes the competition outcome also a function of nutrient supply by affecting the amplitude of diel nutrient oscillations, with gleaners dominating when nutrient supply is low, opportunists when nutrient supply is high, and both species coexisting at intermediate levels of nutrient supply. The combined effects of seasonal and diel light cycles (diel scenario) shape a latitudinal diversity gradient with decreasing diversity towards higher latitudes and a unimodal de- pendence of diversity on nutrient supply and, therefore, on ecosystem productivity. The proposed mechanism can help interpret the biogeography of major phytoplankton functional groups in the global ocean and link them with large-scale biodiversity patterns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 44 pp
    Publication Date: 2022-01-19
    Description: Resource-competition theory predicts the promotion of diversity by resource variations. Daily light oscillation is a periodic variation of an essential resource for phytoplankton growth occurring at any ecosystem. Several studies have revealed the importance of frequency and intensity of light oscillations on phytoplankton competition and diversity. In this study we focus on phytoplankton competition for one limiting nutrient under daily light oscillations, using a simple chemostat model. We investigate competition outcomes at different nutrient loads, for examining the possible contribution of daily light oscillations on the productivity diversity relationship, as well as at different latitudinal light conditions, for evaluating the effect of seasonality. We show that daily light oscillation increases the average nutrient concentration in the substrate leading to increasing nutrient concentrations with nutrient load. This controls a shift from gleaner's to opportunist's dominance, while coexistence at intermediate nutrient loads indicates a unimodal relationship of diversity with productivity. By using a simple expression of zooplankton top-down control and achieving multispecies coexistence, we show that these competitive outcomes are associated with temporal niches among phytoplankton species during the daily time. The multispecies community supports a unimodal productivity-diversity relationship, while the decrease of diversity at high nutrient loads is stronger when shading by phytoplankton biomass is considered. We also found a decrease of diversity with latitude associated with the disturbance of daily niches driven by seasonality. The results indicate that daily light oscillation can be a contributing process for niche creation and shaping of phytoplankton diversity in natural systems.
    Keywords: Course of study: MSc Biological Oceanography
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    SPRINGER HEIDELBERG
    In:  EPIC3Theoretical Ecology, SPRINGER HEIDELBERG, ISSN: 1874-1738
    Publication Date: 2019-11-06
    Description: The metaecosystem framework has been proposed to conceptualize the interactive effects of dispersal and resource flows on the structure and functioning of communities in a heterogeneous environment. Here, we model a two-patch metaecosystem where two species with a trade-off in resource requirements compete for two limiting resources—generalizing the so-called gradostat experimental setup. We study the competition outcome in dependence of resource heterogeneity and between-patch diffusion for different combinations of resource supply ratios. Our numerical simulations show that community composition and local and regional diversity are determined by the interplay of resource heterogeneity, resource supply stoichiometry, and diffusion rate. High resource heterogeneity increases regional diversity, with species coexisting due to spatial segregation, whereas low resource heterogeneity favors local diversity, as species coexist mainly by local resource partitioning. Regional diversity averaged across a gradient of resource ratios decreases monotonically with diffusion rate, while local diversity follows a unimodal dependency. However, these dependencies become bimodal for high resource heterogeneity because various bistable states occur at intermediate diffusion rates. We identify three kinds of bistable states with species priority effect: (i) bistability between the dominance of one or the other competitor, (ii) bistability between one species dominance or species coexistence, and (iii) two alternative coexistence regimes differing in species-relative abundances. Most bistable states appear at high resource levels when biomass fluxes strongly interact with resource fluxes. Our analysis provides new insights for the potential effects of metaecosystem dynamics on biodiversity patterns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    The Royal Society
    In:  EPIC3Philosophical Transactions of the Royal Society B Biological Sciences, The Royal Society, 371(1694), pp. 20150270-20150270, ISSN: 0962-8436
    Publication Date: 2023-09-22
    Description: 〈jats:p〉Two ecological frameworks have been used to explain multitrophic interactions, but rarely in combination: (i) ecological stoichiometry (ES), explaining consumption rates in response to consumers' demand and prey's nutrient content; and (ii) metabolic theory of ecology (MTE), proposing that temperature and body mass affect metabolic rates, growth and consumption rates. Here we combined both, ES and MTE to investigate interactive effects of phytoplankton prey stoichiometry, temperature and zooplankton consumer body mass on consumer grazing rates and production in a microcosm experiment. A simple model integrating parameters from both frameworks was used to predict interactive effects of temperature and nutrient conditions on consumer performance. Overall, model predictions reflected experimental patterns well: consumer grazing rates and production increased with temperature, as could be expected based on MTE. With decreasing algal food quality, grazing rates increased due to compensatory feeding, while consumer growth rates and final biovolume decreased. Nutrient effects on consumer biovolume increased with increasing temperature, while nutrient effects on grazing rates decreased. Highly interactive effects of temperature and nutrient supply indicate that combining the frameworks of ES and MTE is highly important to enhance our ability to predict ecosystem functioning in the context of global change.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vallino, J. J., & Tsakalakis, I. Phytoplankton temporal strategies increase entropy production in a marine food web model. Entropy, 22(11), (2020): E1249, doi:10.3390/e22111249.
    Description: We develop a trait-based model founded on the hypothesis that biological systems evolve and organize to maximize entropy production by dissipating chemical and electromagnetic free energy over longer time scales than abiotic processes by implementing temporal strategies. A marine food web consisting of phytoplankton, bacteria, and consumer functional groups is used to explore how temporal strategies, or the lack thereof, change entropy production in a shallow pond that receives a continuous flow of reduced organic carbon plus inorganic nitrogen and illumination from solar radiation with diel and seasonal dynamics. Results show that a temporal strategy that employs an explicit circadian clock produces more entropy than a passive strategy that uses internal carbon storage or a balanced growth strategy that requires phytoplankton to grow with fixed stoichiometry. When the community is forced to operate at high specific growth rates near 2 d−1, the optimization-guided model selects for phytoplankton ecotypes that exhibit complementary for winter versus summer environmental conditions to increase entropy production. We also present a new type of trait-based modeling where trait values are determined by maximizing entropy production rather than by random selection.
    Description: This research was funded by the Simons Foundation grant 549941 (J.J.V., I.T.) and NSF awards: 1558710 (J.J.V., I.T.), 1655552, 1637630, 1841599 (J.J.V.).
    Keywords: Maximum entropy production ; Trait-based modeling ; Temporal strategy ; Circadian rhythm ; Biogeochemistry ; Food web model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tsakalakis, I., Follows, M. J., Dutkiewicz, S., Follett, C. L., & Vallino, J. J. Diel light cycles affect phytoplankton competition in the global ocean. Global Ecology and Biogeography, 31(9), (2022): 1838-1849, https://doi.org/10.1111/geb.13562.
    Description: Aim Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. Location Global ocean. Major taxa studied Phytoplankton. Methods We use a three-dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. Results Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusions Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.
    Description: Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems supported M.J.F. and S.D. on CBIOMES grant #549931; C.L.F. on CBIOMES grants #827829 and #553242; and J.J.V. and I.T. on CBIOMES grant #549941. The National Science Foundation supported I.T. and J.J.V. on award #1558710 and J.J.V. on awards #1637630, #1655552 and #1841599.
    Keywords: Biogeography ; Diel light cycle ; Global ocean ; Modelling ; Nutrient cycles ; Phytoplankton ; Resource competition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...