GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Magnetism and Magnetic Materials 104-107 (1992), S. 60-62 
    ISSN: 0304-8853
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Preliminary results are presented from the first validation of geophysical dataproducts (ice concentration, snow thickness on sea ice ( ) and ice temperature ( ) fromthe NASA EOS Aqua AMSR-E sensor, in East Antarctica (in September-October 2003). Thechallenge of collecting sufficient measurements with which to adequately validate thecoarse-resolution AMSR-E data products was addressed by means of a hierarchicalapproach, using detailed in situ measurements, digital aerial photography and other satellitedata. Initial results indicate that, at least under cold conditions with a dry snowcover, thereis a reasonably close agreement between satellite- and aerial photo-derived iceconcentrations i.e., 97.2 ±3.6% for NT2 and 96.5 ±2.5% for BBA algorithms versus 94.3±10% for the aerial photos. In general, the AMSR-E concentration represents a slightoverestimate of the actual concentration, with the largest discrepancies occurring in regionscontaining a relatively high proportion of thin ice. Although the AMSR-E concentrations fromthe NT2 and BBA algorithms are similar on average, differences of 〉5% occur on a point-by-point basis, again related to thin ice distribution. The AMSR-E ice temperature ( ) productagrees with coincident surface measurements to within approximately 0.5o C. Regardingsnow thickness, the AMSR retrieval is a significant underestimate compared to in situmeasurements weighted by the percentage of thin ice (and open water) present. For thecase study analysed, the underestimate was 46% for the overall average, but 23%compared to smooth ice measurements. An encouraging factor is that the spatialdistribution of the AMSR-E product follows an expected and consistent spatial pattern,suggesting that the observed difference may be an offset (at least under freezingconditions). Areas of discrepancy are identified, and the need for future work highlighted.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-03
    Description: Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x , y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (~5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (~2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (~10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope.
    Print ISSN: 0022-0744
    Electronic ISSN: 1477-9986
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...