GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 411 (2001), S. 678-680 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Intense explosions of relatively short duration frequently precede large explosive and effusive volcanic eruptions—by as much as weeks to months in the case of very viscous magmas. In some cases, such pre-eruption activity has served as a sufficient warning to those living in the vicinity ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 48 (1986), S. 325-339 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract We report experiments on the flow of two fluids of contrasting viscosity through a pipe in which low-viscosity fluid occupies the center of the pipe. The volume flux of the low-viscosity fluid in the pipe increased during an experiment but did not reach 100% in most cases. The transition from high- to low-viscosity-dominated outflow involved a drop in pressure gradient and an increase in flow rate due to reduced viscous resistance in the pipe. Initially, the central flow was thin and parallel-sided, but as its diameter increased the flow became unstable. A sequence of instabilities was observed during the course of each experiment, both in time and as a function of height in the pipe. In the most commonly observed instability the central flow adopted a helical geometry. The transition from parallel-sided to unstable flow first appeared at the top of the pipe and propagated downwards against the flow. Axisymmetric instabilities originating at the pipe entrance were also observed. All forms of instability exhibited entrainment of viscous fluid into the faster moving central flow. Entrainment was extensive early in the existence of the central flow, but later on the volume flux of lower-viscosity fluid in the central flow rose more rapidly than the rate of entrainment and the proportion of lower-viscosity fluid increased with time. These compositional changes determined the viscosity of the central flow which was found to control its diameter and velocity. In banded pumice deposits, silicic pumice without mafic component is commonly erupted alongside banded pumice blocks. We infer that banded pumice may correspond to the central flow in our experiments, i. e., that viscous magma has been incorporated into less viscous melt, and that pure acid pumice is derived from the outer flow. Changes in eruption style may be caused by variations in pressure gradient and flow rate due to changes in the viscosity of the melt in the conduit. Varied mafic/silicic proportions and degree of mixing in magmatic associations are controlled by the bulk volume erupted, discharge rate, initial temperature difference and aspect ratio of the conduit.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0819
    Keywords: Key words Rhyolite ; Volatiles ; Vent ; Eruption transitions ; Shear ; Permeable ; Tuffisite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5–3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20–40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 100 (1988), S. 470-483 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The spatial and chemical relationships between the melt occupying the reservoir and the mineral assemblages crystallising at the margins are reconstructed for the magma chamber which produced the 11000 yr.B.P. tephra deposit of Laacher See Volcano. The melt showed vertical chemical zonation immediately prior to eruption, and throughout most of the magma volume only a small fraction of crystals were present. The eruption also ejected crystal-rich “nodules”, ranging from mafic to felsic in composition, which are samples of the materials crystallising at the boundaries of the chamber. New data on nodule petrography and chemical compositions of whole-rocks, minerals and interstitial glasses are presented. Volume fraction of interstitial glass is not systematically related to mineral assemblage and varies typically between 1 and 20 vol%, i.e. the crystals interlock. One exception is a group of mafic nodules with glass volume fractions between 25 and 40 vol%. Bulk compositions of mafic nodules show strong enrichments or depletions in all major elements relative to the mafic phonolite interstitial melt. Felsic nodules show much less pronounced differences with their interstitial melt. Felsic nodules contain interstitial glasses with a range of compositions similar to that in the zoned bulk of the chamber and were probably derived from different heights on the walls. Mafic nodules have glass compositions similar to those at the base of the zoned liquid column and were probably derived from the floor. Modal mineralogy, glass composition and mineral composition are systematically related in the nodules whereas in individual pumices samples derived from the main body of the chamber, a broader range of mineral compositions are often found. Mineral assemblages were especially diverse in the upper part of the chamber. It is deduced that the whole of the essentially liquid part of the chamber was emptied by the eruption, that strongly contrasting mineral assemblages were forming simultaneously on the walls and floor, that the gradient in crystal content in the crystallisation boundary layer was more gradual at the floor than at the walls, and that the pumice mineralogy is not a simple phenocryst assemblage but is a mixture of crystals which grew from melts separated in space and/or time.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...