GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 19 (2003), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A free-drifting 14-sonobuoy array was used to localize North Atlantic right whales (Eubalaena glacialis) in the Grand Manan Basin area of the Bay of Fundy. This area is a primary summer/autumn right whale habitat and overlaps an international shipping lane. The three-hour deployment on a single day provided two-dimensional localization of 94 right whale sounds based on arrival time differences determined from spectrogram cross-correlation analysis. The sounds were of two distinct types: tonal and gunshot. Maximum detection distances were about 30 km for both types of sound. The mean RMS location error was 1.8 km for tonal-type sounds and 2.5 km for gunshot-type sounds. The average RMS error was 20% of the average distance from the receiving hydrophones, the primary source of error being uncertainty in the sonobuoy positions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2012. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 22 (2012): 2021–2033, doi:10.1890/11-1841.1.
    Description: Vessel strikes are the primary source of known mortality for the endangered North Atlantic right whale (Eubalaena glacialis). Multi-institutional efforts to reduce mortality associated with vessel strikes include vessel-routing amendments such as the International Maritime Organization voluntary “area to be avoided” (ATBA) in the Roseway Basin right whale feeding habitat on the southwestern Scotian Shelf. Though relative probabilities of lethal vessel strikes have been estimated and published, absolute probabilities remain unknown. We used a modeling approach to determine the regional effect of the ATBA, by estimating reductions in the expected number of lethal vessel strikes. This analysis differs from others in that it explicitly includes a spatiotemporal analysis of real-time transits of vessels through a population of simulated, swimming right whales. Combining automatic identification system (AIS) vessel navigation data and an observationally based whale movement model allowed us to determine the spatial and temporal intersection of vessels and whales, from which various probability estimates of lethal vessel strikes are derived. We estimate one lethal vessel strike every 0.775–2.07 years prior to ATBA implementation, consistent with and more constrained than previous estimates of every 2–16 years. Following implementation, a lethal vessel strike is expected every 41 years. When whale abundance is held constant across years, we estimate that voluntary vessel compliance with the ATBA results in an 82% reduction in the per capita rate of lethal strikes; very similar to a previously published estimate of 82% reduction in the relative risk of a lethal vessel strike. The models we developed can inform decision-making and policy design, based on their ability to provide absolute, population-corrected, time-varying estimates of lethal vessel strikes, and they are easily transported to other regions and situations.
    Description: This research was supported by the Environment Canada Habitat Stewardship Programme, the Canadian Whale Institute, and R. K. Smedbol (St. Andrews Biological Station).
    Keywords: Absolute probability estimates ; Endangered whales ; Eubalaena glacialis ; Marine area closure ; Mortality reduction ; North Atlantic right whale ; Roseway Basin, Scotian Shelf ; Vessel routing ; Vessel strike
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, H. D., Taggart, C. T., Newhall, A. E., Lin, Y.-T., & Baumgartner, M. F. Acoustic detection range of right whale upcalls identified in near-real time from a moored buoy and a Slocum glider. Journal of the Acoustical Society of America, 151(4), (2022): 2558. https://doi.org/10.1121/10.0010124.
    Description: The goal of this study was to characterize the detection range of a near real-time baleen whale detection system, the digital acoustic monitoring instrument/low-frequency detection and classification system (DMON/LFDCS), equipped on a Slocum glider and a moored buoy. As a reference, a hydrophone array was deployed alongside the glider and buoy at a shallow-water site southwest of Martha's Vineyard (Massachusetts, USA) over a four-week period in spring 2017. A call-by-call comparison between North Atlantic right whale upcalls localized with the array (n = 541) and those detected by the glider or buoy was used to estimate the detection function for each DMON/LFDCS platform. The probability of detection was influenced by range, ambient noise level, platform depth, detection process, review protocol, and calling rate. The conservative analysis of near real-time pitch tracks suggested that, under typical conditions, a 0.33 probability of detection of a single call occurred at 6.2 km for the buoy and 8.6–13.4 km for the glider (depending on glider depth), while a 0.10 probability of detection of a single call occurred at 14.4 m for the buoy and 22.6–27.5 km for the glider. Probability of detection is predicted to increase substantially at all ranges if more than one call is available for detection.
    Description: Support for this study was provided by the Massachusetts Clean Energy Center (MassCEC), Bureau of Ocean and Energy Management (BOEM), and the Nova Scotia Offshore Energy Research Association (OERA). Support for H.D.J. was provided by the Marine Environmental Prediction and Response Network (MEOPAR) Whales Habitat and Listening Experiment (WHaLE), the Killam Foundation, Vanier Canada Graduate Scholarship program, Dalhousie University, the Nova Scotia Graduate Scholarship program, and the Canada Graduate Scholarships–Michael Smith Foreign Study Supplements (CGS-MSFSS) program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...