GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2017-11-06
    Description: IODP site U1417 in the Gulf of Alaska provides a continuous sedimentary record of environmental changes (e.g., in sea surface temperature (SST), marine productivity, ice-rafting) in the subpolar NE Pacific through the Plio-Pleistocene time interval. Here, we present a multi-proxy data set, which allows us to discriminate between different fertilization mechanisms that promoted primary productivity events in the study area between 1.5 Ma and 0.5 Ma. Based on biomarker, micropaleontological, XRF, and sedimentological data, we find that diatom growth benefited from iron-fertilization from aeolian dust, iceberg, and volcanic ash input. Glacial-interglacial SST fluctuations were superimposed by a slight cooling trend with a first pronounced temperature drop during MIS 38 and significantly lowered SSTs persisting through MIS 30 and MIS 28. While the diatom productivity pulses were mainly independent from SST changes, they coincide with terrigenous organic matter input and their occurrence during both glacial and interglacial periods suggest that iron supply from glacigenic dust was mainly controlled by local ice-sheet dynamics. This data set highlights the complexity of fertilization mechanisms in areas affected by evolving ice-sheets and their potential control on the biological carbon pump in subpolar ocean environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Adam Mickiewicz University
    In:  EPIC31st International Conference ‘Processes and Palaeo-environmental changes in the Arctic: from past to present’ (PalaeoArc), Adam Mickiewicz University, Poznań, 2019-05-20-2019-05-24Adam Mickiewicz University
    Publication Date: 2020-06-09
    Description: IODP Expedition 341 succeeded in recovering a continuous sedimentary record of Miocene to Late Pleistocene climate history at drill Site U1417 in the Gulf of Alaska, NE Pacific. Site U1417 sediments provide an excellent opportunity to reconstruct North Pacific sea surface conditions during late Neogene large-scale (global) climate transitions. The Mid Pleistocene Transition (MPT) - one of the most prominent intervals of global Quaternary climate change - is clearly identifiable in Site U1417 sediments (Jaeger et al., 2014). To fully exploit the environmental information archived in U1417 sediments, a sampling strategy has been pursued that permits direct correlation of different (independent) proxy data obtained from biomarker, micropalaeontological, sedimentological and geochemical (XRF) analyses. Mid Pleistocene SSTs in the Gulf of Alaska are in good agreement with SST reconstructions for the North Atlantic and the NW Pacific. A general cooling at about 1 Ma supports earlier hypotheses of an overall Northern Hemisphere ocean cooling as a prerequisite for the increase in continental ice volume. While phytoplankton productivity seems rather independent from SST at Site U1417, it is strongly related to elevated TAR values depicting enhanced input of terrestrial leaf-wax lipids (Meyers, 1997). The transport of these lipids is supposed to be effected by strong winds carrying dust from Alaskan loess deposits to the open ocean as well as by icebergs released from Alaskan tidewater glaciers. The latter is supported by the occasional coincidence of high IRD contents and TAR values. The close relationship between the TAR record, Ba/Al values and the abundance of diatoms, however, strengthens that together with the leaf-wax lipids also iron-bearing dust was exported leading to high productivity events at Site U1417 throughout the Mid Pleistocene. The distinct "on-off" pattern in diatom productivity evolved with the onset of the MPT, which suggests that the expansion of the Northwest Cordilleran Ice Sheet lead to an effective production of glacigenic iron-rich dust that was exported i) by strong northwesterly winds and ii) by icebergs. The observation that productivity peaks in the Gulf of Alaska are not confined to glacial or interglacial periods points to a rather local feedback between the export of iron-bearing dust and an immediately responding ocean surface. The identification of these hitherto unconsidered fertilization mechanisms that potentially fostered ocean productivity and hence the sequestration of atmospheric carbon into the deep ocean are further detailed by Müller et al. (2018).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-13
    Description: Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-29
    Description: Fertilization of the ocean by eolian dust and icebergs is an effective mechanism to enhance primary productivity. In particular, high-nutrient, low-chlorophyll (HNLC) areas where phytoplankton growth is critically iron-limited, such as the subarctic Pacific Ocean and the Southern Ocean, are proposed to respond to increases in bioavailable Fe supply with enhanced phytoplankton productivity and carbon export to the seafloor. While Fe-fertilization from dust is widely acknowledged to explain a higher export production during glacial periods in the Southern Ocean, paleoceanographic records supporting links between productivity and eolian dust and/or icebergs in the North Pacific are scarce. By combining independent proxies indicative of ice-sheet dynamics and ocean productivity from a single marine sedimentary record (Integrated Ocean Drilling Program [IODP] Site U1417), we present a comprehensive data set of phytoplankton response to different fertilization mechanisms in the subarctic northeast Pacific between 1.5 and 0.5 Ma, including the Mid Pleistocene Transition. Importantly, the timing of the fertilization events is more strongly controlled by local ice-sheet extent than by glacial-interglacial climate variability. Our findings indicate that fertilization by glacigenic debris results in productivity events in HNLC areas adjacent to ice sheets, and that this mechanism may represent an important, yet rarely considered, driver of phytoplankton growth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-10
    Keywords: 41-366; Actinocyclus ellipticus; Actinocyclus ingens forma planus; Actinocyclus ingens var. ingens; Actinocyclus ingens var. nodus; Actinocyclus octonarius; Actinocyclus spp.; Actinoptychus senarius; Actinoptychus spp.; Actinoptychus thumii; Actinoptychus undulatus var. octoplicatus; Actinoptychus vulgaris; Anaulus spp.; Asterolampra insignis; Asterolampra spp.; Asteromphalus spp.; Aulacoseira spp.; Azpeitia endoi; Azpeitia komurae; Azpeitia spp.; Baxteriopsis brunii; Biddulphia sp.; Biddulphia spp.; Bogorovia veniamini; Cavitatus jouseanus; Cestodiscus peplum; Cestodiscus reticulatus; Cestodiscus spp.; Chaetoceros spores; Clavularia barbadensis; Coscinodiscus asteromphaulus; Coscinodiscus excavatus; Coscinodiscus hajosiae; Coscinodiscus marginatus; Coscinodiscus perforatus; Coscinodiscus rhombicus; Coscinodiscus sp.; Coscinodiscus spp.; Costopyxis trochlea; Craspedodiscus elegans; Cymatosira biharensis; Cymatosira compacta; Cymatosira fossilis; Cymatosira praecompacta; Cymatosira sp.; Cymatosira spp.; Deep Sea Drilling Project; DEPTH, sediment/rock; Diatom abundance; Diatom preservation; Diatoms, valves; Diatoms indeterminata; Diatom zone; Diploneis spp.; Distephanosira architecturalis; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Eucampia spp.; Glomar Challenger; Goniothecium danicum; Goniothecium decoratum; Goniothecium loricatum; Goniothecium rogersii; Goniothecium spp.; Grammatophora spp.; Hemiaulus kittonii; Hemiaulus spp.; Hemiaulus subacutus; Hyalodiscus spp.; Kisseleviella sp.; Kisseleviella tricoronata; Kozloviella subrotunda; Leg41; Lisitzina ornata; Monobranchia simplex; Neodelphineis pelagica; North Atlantic/CONT RISE; Odontella spp.; Opephora spp.; Paralia sp.; Paralia spp.; Paralia sulcata; Planifolia tribranchiata; Pleurosigma spp.; Porotheca danica; Pseudodimerogramma spp.; Pseudopodosira simplex; Pseudopodosira sp.; Pseudopodosira wittii; Pseudopyxilla americana; Pseudopyxilla capreolus; Pseudopyxilla directa; Pseudopyxilla dubia; Pseudopyxilla spp.; Pseudorocella barbadensis; Pseudostictodiscus picus; Pseudotriceratium cf. chenvieri; Pterotheca aculeifera; Pterotheca carinifera; Pterotheca evermanni; Pyxilla oligocaenica; Pyxilla spp.; Raphidodiscus marylandicus; Rhaphoneis amphiceros; Rhaphoneis angulata; Rhaphoneis elongata; Rhaphoneis fossile; Rhaphoneis scalaris; Rhaphoneis sp.; Rhaphoneis spp.; Rhizosolenia hebetata; Rhizosolenia miocenica; Rhizosolenia norwegica; Rhizosolenia palliola; Rhizosolenia spp.; Rhizosolenia styliformis; Riedelia claviger; Rocella gelida; Rocella praenitida; Rocella sp.; Rocella vigilans; Rossiella symmetrica; Rouxia hannae; Rouxia obesa; Rouxia spp.; Rutilaria areolata; Rutilaria sp.; Sample code/label; Sceptroneis pupa; Sceptroneis sp.; Stellarima spp.; Stepahnogonia hanzawae; Stepahnogonia polyacantha; Stepahnogonia spp.; Stephanopyxis marginata; Stephanopyxis schenckii; Stephanopyxis sp.; Stephanopyxis spinossima; Stephanopyxis spp.; Stephanopyxis turris; Thalassionema nitzschioides; Thalassiosira irregulata; Thalassiosira nidulus; Thalassiosira spp.; Thalassiothrix longissima; Triceratium barbadense; Triceratium branchiatum; Triceratium condecorum; Triceratium inconspicuum var. trilobata; Triceratium radiosoreticulatum; Triceratium schulzii; Triceratium sp.; Triceratium spp.; Trinacria sp.; Trinacria spp.; Trochosira concava; Trochosira spinosa
    Type: Dataset
    Format: text/tab-separated-values, 832 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-10
    Keywords: 38-338; Chaetoceros spores; Coronodiscus curvisetus; Coronodiscus trigonus; Deep Sea Drilling Project; DEPTH, sediment/rock; Diatom abundance; Diatom preservation; Diatoms, resting spores; Diatoms indeterminata; Diatom zone; Dicladia capreola; Dicladia mitra; Dispinodiscus pilusus; Dispinodiscus pilusus var. montanus; Dispinodiscus pilusus var. pilusus; Dispinodiscus rugosus; Dispinodiscus stimulus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus dicollinus; Gemellodiscus dimontanus; Gemellodiscus geminus; Gemellodiscus hirtus; Gemellodiscus incurvus; Gemellodiscus micronodosus; Gemellodiscus pliocenus; Glomar Challenger; Leg38; Liradiscus caepus; Liradiscus castaneus; Liradiscus castaneus var. castaneus; Liradiscus castaneus var. reticulatus; Liradiscus cucurbitus; Liradiscus japonicus; Liradiscus nimbus; Liradiscus pacificus; Liradiscus petasus; Liradiscus plicatulus; Liradiscus reticulatus; Monocladia alta; Monocladia humilis; Monocladia norvegica; Monocladia perizoma; Nannofossil zone; North Atlantic/Norwegian Sea/PLATEAU; Periptera petiolata; Periptera schraderi; Peripteropsis norwegica; Peripteropsis tetracladia; Peripteropsis tetracornusa; Quadrocistella montana; Quadrocistella paliesa; Quadrocistella palmesa; Quadrocistella rectagonuma; Quadrocistella tubera; Sample code/label; Species richness; Syndendrium altantemna; Syndendrium diadema; Syndendrium humiliantemna; Syndendrium medusae; Syndendrium rugosum; Syndendrium scarabaeum; Truncatulus atlanticus; Truncatulus ellipticus; Truncatulus hajosiae; Truncatulus norvegicus; Truncatulus tortonicus; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus lanceolatus; Vallodiscus simplexus; Vallodiscus spp.; Xanthioisthmus biscoctiformis; Xanthioisthmus maculata; Xanthioisthmus panduraeformis; Xanthioisthmus praemaculata; Xanthioisthmus specticularis; Xanthiopyxis brevispinosa; Xanthiopyxis circulatus; Xanthiopyxis globosa; Xanthiopyxis hirsuta; Xanthiopyxis lanceolatus; Xanthiopyxis norwegica; Xanthiopyxis obesa; Xanthiopyxis oblonga; Xanthiopyxis polaris; Xanthiopyxis reticulata; Xanthiopyxis spp.; Xanthiopyxis teneropunctata
    Type: Dataset
    Format: text/tab-separated-values, 8843 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-10
    Keywords: 56-436; Chaetoceros spores; Coronodiscus collarius; Deep Sea Drilling Project; DEPTH, sediment/rock; Diatom abundance; Diatom preservation; Diatoms, resting spores; Diatoms indeterminata; Diatom zone; Dicladia capreola; Dispinodiscus pilusus; Dispinodiscus pilusus var. montanus; Dispinodiscus pilusus var. pilusus; Dispinodiscus stimulus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Epoch; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus geminus; Gemellodiscus hirtus; Gemellodiscus incurvus; Glomar Challenger; Leg56; Liradiscus castaneus var. castaneus; Liradiscus japonicus; Liradiscus pacificus; Liradiscus petasus; Liradiscus plicatulus; Liradiscus reticulatus; Nannofossil zone; North Pacific/RIDGE; Quadrocistella montana; Quadrocistella paliesa; Quadrocistella rectagonuma; Quadrocistella tubera; Sample code/label; Species richness; Syndendrium akibae; Syndendrium diadema; Syndendrium humiliantemna; Truncatulus tortonicus; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus simplexus; Vallodiscus spp.; Xanthioisthmus maculata; Xanthiopyxis polaris; Xanthiopyxis spp.; Xanthiopyxis teneropunctata
    Type: Dataset
    Format: text/tab-separated-values, 2760 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-10
    Keywords: Atsuna-section; Chaetoceros spores; Coronodiscus collarius; Diatom abundance; Diatom preservation; Diatoms indeterminata; Diatom zone; Dicladia capreola; Dicladia japonica; Dispinodiscus pilusus; Dispinodiscus pilusus var. pilusus; Dispinodiscus stimulus; DSDP/ODP/IODP sample designation; Formation; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus geminus; Gemellodiscus hirtus; Gemellodiscus spp.; HAND; Japan; Liradiscus castaneus var. castaneus; Liradiscus japonicus; Liradiscus pacificus; Liradiscus petasus; Liradiscus plicatulus; Liradiscus reticulatus; Monocladia alta; Monocladia humilis; Nannofossil zone; Peripteropsis tetracornusa; Quadrocistella montana; Quadrocistella paliesa; Quadrocistella palmesa; Quadrocistella rectagonuma; Quadrocistella spp.; Quadrocistella tubera; Sample code/label; Sampling by hand; Species richness; Syndendrium akibae; Syndendrium diadema; Syndendrium humiliantemna; Truncatulus californicus; Truncatulus ellipticus; Truncatulus hajosiae; Truncatulus norvegicus; Truncatulus tortonicus; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus simplexus; Vallodiscus spp.; Xanthioisthmus panduraeformis; Xanthioisthmus specticularis; Xanthiopyxis circulatus; Xanthiopyxis hirsuta; Xanthiopyxis lanceolatus; Xanthiopyxis polaris; Xanthiopyxis reticulata; Xanthiopyxis spp.
    Type: Dataset
    Format: text/tab-separated-values, 4488 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Keywords: 41-369A; Chaetoceros spores; Coronodiscus curvisetus; Coronodiscus trigonus; Deep Sea Drilling Project; DEPTH, sediment/rock; Diatom abundance; Diatom preservation; Diatoms, resting spores; Diatoms indeterminata; Diatom zone; Dispinodiscus debilis var. debilis; Dispinodiscus debilis var. montanus; Dispinodiscus stimulus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus dicollinus; Gemellodiscus dimontanus; Gemellodiscus geminus; Gemellodiscus hirtus; Glomar Challenger; Leg41; Liradiscus castaneus var. castaneus; Liradiscus castaneus var. reticulatus; Liradiscus cucurbitus; Liradiscus japonicus; Liradiscus nimbus; North Atlantic/CONT SLOPE; Peripteropsis norwegica; Peripteropsis trinodis; Quadrocistella paliesa; Quadrocistella palmesa; Quadrocistella rectagonuma; Quadrocistella tubera; Sample code/label; Species richness; Syndendrium humiliantemna; Syndendrium reticulatum; Syndendrium scarabaeum; Truncatulus spp.; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus lanceolatus; Vallodiscus simplexus; Vallodiscus spp.; Xanthioisthmus biscoctiformis; Xanthioisthmus panduraeformis; Xanthioisthmus praemaculata; Xanthioisthmus sp.; Xanthioisthmus specticularis; Xanthiopyxis acrolopha; Xanthiopyxis brevispinosa; Xanthiopyxis circulatus; Xanthiopyxis globosa; Xanthiopyxis hirsuta; Xanthiopyxis lanceolatus; Xanthiopyxis oblonga; Xanthiopyxis polaris; Xanthiopyxis reticulata; Xanthiopyxis spp.; Xanthiopyxis teneropunctata
    Type: Dataset
    Format: text/tab-separated-values, 8523 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-10
    Keywords: 87-584; Chaetoceros spores; Coronodiscus collarius; Coronodiscus trigonus; Deep Sea Drilling Project; DEPTH, sediment/rock; Diatom abundance; Diatom preservation; Diatoms indeterminata; Diatom zone; Dicladia capreola; Dicladia japonica; Dicladia mitra; Dispinodiscus pilusus var. montanus; Dispinodiscus pilusus var. pilusus; Dispinodiscus stimulus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Gemellodiscus bifurcus; Gemellodiscus caveatus; Gemellodiscus cingulus var. cingulus; Gemellodiscus cingulus var. longus; Gemellodiscus dicollinus; Gemellodiscus geminus; Gemellodiscus hirtus; Gemellodiscus incurvus; Gemellodiscus micronodosus; Glomar Challenger; Leg87; Liradiscus akibae; Liradiscus castaneus var. castaneus; Liradiscus castaneus var. reticulatus; Liradiscus japonicus; Liradiscus pacificus; Liradiscus petasus; Liradiscus plicatulus; Liradiscus reticulatus; Monocladia alta; Monocladia humilis; Nannofossil zone; North Pacific; Quadrocistella montana; Quadrocistella paliesa; Quadrocistella rectagonuma; Quadrocistella tubera; Sample code/label; Species richness; Syndendrium diadema; Syndendrium humiliantemna; Syndendrium rugosum; Truncatulus hajosiae; Truncatulus norvegicus; Truncatulus simplex; Truncatulus tortonicus; Vallodiscus chinchae; Vallodiscus complexus; Vallodiscus simplexus; Vallodiscus spp.; Xanthioisthmus biscoctiformis; Xanthioisthmus specticularis; Xanthiopyxis circulatus; Xanthiopyxis globosa; Xanthiopyxis hirsuta; Xanthiopyxis oblonga; Xanthiopyxis polaris; Xanthiopyxis spp.; Xanthiopyxis teneropunctata
    Type: Dataset
    Format: text/tab-separated-values, 4599 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...