GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser beam smoothing by spectral dispersion and by polarization smoothing has been observed to significantly reduce the scattering losses by stimulated Brillouin and stimulated Raman scattering from inertial confinement fusion hohlraums. For these measurements, the laser beam smoothing and the high-Z hohlraum wall plasma parameters approach the conditions of future inertial confinement fusion experiments. The simultaneous application of the smoothing techniques has reduced the scattering losses by almost one order of magnitude down to the 1% level. The experimental scaling of the stimulated Brillouin reflectivity compares well to modeling assuming nonlinear damping on the ion acoustic waves in three-dimensional nonlinear wave simulations and calculated hohlraum plasma conditions from radiation-hydrodynamic modeling. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2023-2032 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser–plasma interactions are sensitive to both the fine-scale speckle and the larger scale envelope intensity of the beam. For some time, simulations have been done on volumes taken from part of the laser beam cross-section, and the results from multiple simulations extrapolated to predict the behavior of the entire beam. However, such extrapolation could very well miss effects of the larger scale structure on the fine-scale. The only definitive method is to simulate the entire beam. These very large calculations have not been feasible until recently, but they are now possible on massively parallel computers. Whole beam simulations show the dramatic difference in the propagation and break up of smoothed and aberrated beams.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The original ignition "point designs" (circa 1992) for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] were made energetically conservative to provide margin for uncertainties in laser absorption, x-ray conversion efficiency and hohlraum-capsule coupling. Since that time, extensive experiments on Nova [J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989)] and Omega [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] and their related analysis indicate that NIF coupling efficiency may be almost "as good as we could hope for." Given close agreement between experiment and theory/modeling, one can credibly explore target enhancements which couple more of NIFs energy to an ignition capsule. These include using optimized mixtures of materials to reduce x-ray wall losses, slightly reduced laser entrance holes, and laser operation strategies which increase the amount of energy one can extract from NIF. It is found that 3–4× increases in absorbed capsule energy appear possible, providing a potentially more robust target and ∼10× increase in capsule yield.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acoustic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4ω probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In particular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calculations which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Rayleigh–Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wavelengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. Presented here are the results of a series of laser experiments designed to measure the RT dispersion curve for a radiatively driven sample. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 μm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths ≥20 μm experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a two-dimensional radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. Due to the influence of the rippled shock transit phase of the experiment and ambiguities associated with directly extracting the physical amplitude of the perturbations at the ablation front from the simulations, direct comparison to the ablation front RT theory of Betti et al. [Phys. Plasmas 5, 1446 (1998)], was difficult. Instead, a numerical "experiment" was constructed that minimized the influence of the shock and this was compared to the Betti model showing quite good agreement. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of radiation temperatures from empty and gas-filled hohlraums heated at the Nova Laser Facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] show efficient coupling of the laser power to the target when applying laser beam smoothing techniques. Scattering losses are reduced to the 3% level while the radiation temperatures increased by ∼15 eV for smoothed laser beams. The experimental findings and supporting calculations indicate that filamentation and gain for stimulated Raman and Brillouin scattering is suppressed in the hohlraum plasma for smoothed laser beams. The scaling of the radiation temperature is well described by integrated radiation hydrodynamic LASNEX modeling [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 85 (1975)] following the Marshak scaling. Peak radiation temperatures are in excess of 230 eV in gas-filled hohlraums in agreement with the detailed LASNEX modeling. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed 〉2 has been studied in experiments on low density (40 mg/cc to 50 mg/cc) foams. Laser-heated Au hohlraums provided a radiation drive that heated SiO2 and Ta2O5 aerogel foams of varying lengths. Face-on emission measurements at 550 eV provided clean signatures of the radiation breakout. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. The Marshak radiation wave transport is studied in a geometry that allows direct comparisons with analytic models and two-dimensional code simulations. Experiments show important effects that will affect even nondiffusive and transonic radiation transport experiments studied by others in the field. This work is of basic science interest with applications to inertial confinement fusion and astrophysics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new method for performing compressible hydrodynamic instability experiments using high-power lasers is presented. A plasma piston is created by supersonically heating a low-density carbon based foam with x-rays from a gold hohlraum heated to ∼200 eV by a ∼1 ns Nova laser pulse [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)]. The piston causes an almost shockless acceleration of a thin, higher-density payload consisting of a layer of gold, initially 1/2 μm thick, supported on 10 μm of solid plastic, at ∼45 μm/ns2. The payload is also heated by hohlraum x-rays to in excess of 150 eV so that the Au layer expands to ∼20 μm prior to the onset of instability growth. The Atwood number between foam and Au is ∼0.7. Rayleigh–Taylor instability, seeded by the random fibrous structure of the foam, causes a turbulent mixing region with a Reynolds number 〉105 to develop between piston and Au. The macroscopic width of the mixing region was inferred from the change in Au layer width, which was recorded via time resolved x-radiography. The mix width thus inferred is demonstrated to depend on the magnitude of the initial foam seed. For a small initial seed, the bubble front in the turbulent mixing region is estimated indirectly to grow as ∼0.036±0.19 [∫(square root of)(Ag)dt]2 which would imply for a constant acceleration 0.036±0.019 Agt2. More direct measurement techniques must be developed in larger scale experiments to remove potential complicating factors and reduce the error bar to a level that would permit the measurements to discriminate between various theories and models of turbulent mixing. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The performance of indirectly driven fusion capsules has been improved by mid Z doping of the plastic capsule ablator. The doping increases x-ray preheat shielding leading to a more isentropic compression, higher convergence, and higher neutron yield. A 4× increase in neutron yield is both calculated and observed as the Ge doping level is increased from 0% to 3% by atomic fraction. A predicted 40% decrease in x-ray image core size with increasing Ge content is confirmed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Stimulated Brillouin backscatter from large scale-length gas-filled targets has been measured on the Nova laser. These targets were designed to approximate conditions in indirect drive ignition target designs in underdense plasma electron density (ne∼1021/cm3), temperature (Te(approximately-greater-than)3 keV), and gradient scale lengths (Ln∼2 mm, Lv(approximately-greater-than)6 mm) as well as calculated gain for stimulated Brillouin scattering (SBS). The targets used in these experiments were gas-filled balloons with polyimide walls (gasbags) and gas-filled hohlraums. Detailed characterization using x-ray imaging and x-ray and optical spectroscopy verifies that the calculated plasma conditions are achieved. Time-resolved SBS backscatter from these targets is 〈3% for conditions similar to ignition target designs. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...