GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 9 (1988), S. 165-194 
    ISSN: 1573-0581
    Keywords: transform margins ; heat flow ; ridge propagation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The northern Norwegian-Greenland Sea opened up as the Knipovich Ridge propagated from the south into the ancient continental Spitsbergen Shear Zone. Heat flow data suggest that magma was first intruded at a latitude of ≈75° N around 60 m.y.b.p. By 40–50 m.y.b.p. oceanic crust was forming at a latitude of 78° N. At ≈12 m.y.b.p. the Hovgård Transform Fault was deactivated during a northwards propagation of the Knipovich Ridge. Spreading is now in its nascent stages along the Molloy Ridge within the trough of the Spitsbergen Fracture Zone. Spreading rates are slower in the north than the south. For the Knipovich Ridge at 78° N they range from 1.5–2.3 mm yr-1 on the eastern flank to 1.9–3.1 mm yr-1 on the western flank. At a latitude of 75° N spreading rates increase to 4.3–4.9 mm yr-1. Thermal profiles reveal regions of off-axial high heat flow. They are located at ages of 14 m.y. west and 13 m.y. east of the northern Knipovich Ridge, and at 36 m.y. on the eastern flank of the southern Knipovich Ridge. These may correspond to episodes of increased magmatic activity; which may be related to times of rapid north-wards rise axis propagation. The fact that the Norwegian-Greenland Sea is almost void of magnetic anomalies may be caused by the chaotic extrusion of basalts from a spreading center trapped within the confines of an ancient continental shear zone. The oblique impact of the propagating rift with the ancient shear zone may have created an unstable state of stress in the region. If so, extension took place preferentially to the northwest, while compression occurred to the southeast between the opening, leaking shear zone and the Svalbard margin. This caused faster spreading rates to the northwest than to the southeast.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Closely spaced, single-beam bathymetric and side-scan sonar investigations on the northern slope of the western Svalbard insular platform have revealed the presence of a Late Quaternary slump complex forming a hanging-wall slump canyon near the head of the Malene Bukta (Malene Bay) bathymetric embayment in the northern continental margin. Repeated slump erosion may be responsible for development of this young feature and the Malene Bukta Embayment. Focusing of the slumping may be due to the trapping of gas at shallow sea-floor depths by gas hydrate, with the consequent formation of subjacent gas-rich, low shear-strength decollement zones. Faults have likely controlled the upward migration of gas into the younger sedimentary prism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Numerous small (50- to 300-m-diameter) strong-backscatter objects were imaged on the 1200- to 1350-m deep crest of Vestnesa Ridge (Fram Strait) and along the 900- to 1000-m deep northeast margin of the Storegga slide valley. Ground-truthing identified most of these objects as 2- to 10-m-deep pockmarks, developed within soft, acoustically stratified silty clays (typical wet bulk density: 1400–1600 kg m-3; sound speed: 1480– 1505 m s-1; porosity, 65–75%; shear strength: 5–10 kPa; water content: 80–120%; and thermal conductivity: 0.8–0.9 W m-1 deg C-1 in the top 3 m). Gas wipeouts, enhanced reflectors, and reflector discontinuities indicate recent or ongoing activity, but the absence of local heat flow anomalies suggests that any upward fluid flows are modest and/or local.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  SeaMARC II (11- to 12-kHz) side-scan sonar revealed hundreds of small strong-backscatter spots, tens to 500 m in diameter, along the lips of the Bear Island fan slide valley. New bathymetry, deep-tow side-scan, deep-tow profiles, heatflow, and gravity cores were collected for ground-truth. These mounds are probably mud diapirs (or mud-built mounds) typically 10–75 m high, formed by glacial sediment mobilized by Late Pleistocene slide events. The mounds are arranged along NNE trending lines, suggesting control by intrasedimentary faults ca. 0.5–1 km apart. Diapirs examined on the Vøring Plateau exhibit WNW structural control. No heatflow anomaly was found in four stations on or next to diapirs in either area.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The high thermal gradient and heat flow 〉1000 mW m-2 on Håkon Mosby Mud Volcano are ascribed to rapid transport of pore water, mud, and gas in a narrow, deep conduit within a 3.1-km-thick glacial sediment unit. The instability is caused by rapid loading of dense glacial sediments on less dense oozes. Changes in pressure–temperature conditions by sudden, large-scale downslope mass movement may induce structural deformation, opening transient pathways from the base of the glacial sediments to the sea floor. This model may also explain slope maxima elsewhere on the margin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Polar Record, 26 (156). pp. 1-6.
    Publication Date: 2021-11-18
    Description: The deep eastern Arctic basin between the Lomonosov Ridge and the Eurasian continental margin differs from other ocean basins in the very slow spreading of its floor and unusual depositional environment under perennial sea-ice cover. The recent expedition ARK IV/3 of RV Polar stern for the first time made geoscientific investigations from the northern margin of the Barents Sea north to the Nansen-Gakkel Ridge. Much deeper than most other mid-ocean ridges, this ridge is poorly-surveyed, but has a central valley which in places is deeper than 5.5 km, 1–1.5 km below the basin floors on either side. Heat flow in the central part of the valley is very rapid; both basement rocks and overlying sediments showed unexpectedly the influence of intense and long-term hydrothermal activity. The sediments on the northern and southern flanks of the ridge are slightly calcareous pelagic mud layers alternating with carbonate-free horizons, where up to 40% of the sedimentary section is soft mud clasts. Similar mud aggregates were observed on the surface of the multi-year sea ice, appearing to represent a special type of sediment transport by sea ice in the Transpolar Drift. In contrast to the western Arctic, Fram Strait and the Norwegian-Greenland Sea, gravel is rarely found in sediment cores. Recovered cores indicate that icebergs and sea ice carrying coarse sediment seldom rafted detritus to the study area during the last approximately 300,000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 48(1/2), pp. 41-43, ISSN: 0032-2490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 48(1/2), pp. 1-19, ISSN: 0032-2490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-16
    Keywords: Arctic Ocean; ARK-IV/3; AWI_Paleo; Conductivity, thermal; DEPTH, sediment/rock; Giant box corer; GKG; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS11; PS11/269-12; PS1511-12; Quaternary Environment of the Eurasian North; QUEEN; Steady state needle probe
    Type: Dataset
    Format: text/tab-separated-values, 3 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-16
    Keywords: Arctic Ocean; ARK-IV/3; AWI_Paleo; Bio-Rosette; BRO; Conductivity, thermal; DEPTH, sediment/rock; GIK21527-7 PS11/371-7; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS11; PS1527-7; Quaternary Environment of the Eurasian North; QUEEN; Steady state needle probe
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...