GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi (0031-05850) vol.27 (2012) nr.1 p.20
    Publication Date: 2015-04-20
    Description: Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU genes. In some cases additional genes such as TEF 1-α and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa).
    Keywords: Biodiversity ; cut-flower industry ; fungal pathogens ; ITS ; LSU ; phylogeny ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi (0031-05850) vol.25 (2010) nr.1 p.109
    Publication Date: 2015-04-20
    Description: Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration.
    Keywords: Internal transcribed spacer ; nuclear ribosomal large subunit (nrLSU) ; Peronosporales ; phylogeny ; Pythiaceae
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi (0031-05850) vol.33 (2014) nr.1 p.1
    Publication Date: 2015-04-20
    Description: The Teratosphaeriaceae represents a recently established family that includes numerous saprobic, extremophilic, human opportunistic, and plant pathogenic fungi. Partial DNA sequence data of the 28S rRNA and RPB2 genes strongly support a separation of the Mycosphaerellaceae from the Teratosphaeriaceae, and also provide support for the Extremaceae and Neodevriesiaceae, two novel families including many extremophilic fungi that occur on a diversity of substrates. In addition, a multi-locus DNA sequence dataset was generated (ITS, LSU, Btub, Act, RPB2, EF-1α and Cal) to distinguish taxa in Mycosphaerella and Teratosphaeria associated with leaf disease of Eucalyptus, leading to the introduction of 23 novel genera, five species and 48 new combinations. Species are distinguished based on a polyphasic approach, combining morphological, ecological and phylogenetic species concepts, named here as the Consolidated Species Concept (CSC). From the DNA sequence data generated, we show that each one of the five coding genes tested, reliably identify most of the species present in this dataset (except species of Pseudocercospora). The ITS gene serves as a primary barcode locus as it is easily generated and has the most extensive dataset available, while either Btub, EF-1α or RPB2 provide a useful secondary barcode locus.
    Keywords: Eucalyptus ; multi-locus ; phylogeny ; species concepts ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-01
    Description: Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
    Keywords: ITS DNA barcodes ; LSU ; novel fungal species ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 27 no. 1, pp. 20-45
    Publication Date: 2024-01-12
    Description: Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and\nLSU\ngenes. In some cases additional genes such as TEF 1-\xce\xb1 and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa).
    Keywords: Biodiversity ; cut-flower industry ; fungal pathogens ; ITS ; LSU ; phylogeny ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 23 no. 1, pp. 55-85
    Publication Date: 2024-01-12
    Description: Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of Corymbia, Eucalyptus and Syzygium spp. (Myrtaceae). The treated species include three new genera, Bagadiella, Foliocryphia and Pseudoramichloridium, 20 new species and one new combination. Novelties on Eucalyptus include: Antennariella placitae, Bagadiella lunata, Cladoriella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsino\xc3\xab eucalypticola, Foliocryphia eucalypti, Leptoxyphium madagascariense, Neofabraea eucalypti, Polyscytalum algarvense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectificae, Strelitziana australiensis and Zeloasperisporium eucalyptorum. Stylaspergillus synanamorphs are reported for two species of Parasympodiella, P. eucalypti sp. nov. and P. elongata, while Blastacervulus eucalypti, Minimedusa obcoronata and Sydowia eucalypti are described from culture. Furthermore, Penidiella corymbia and Pseudoramichloridium henryi are newly described on Corymbia, Pseudocercospora palleobrunnea on Syzygium and Rachicladosporium americanum on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions of all taxa studied.
    Keywords: Corymbia ; Eucalyptus ; microfungi ; Syzygium ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-12
    Description: Novel species of microfungi described in the present study include the following from Australia: Phytophthora amnicola from still water, Gnomoniopsis smithogilvyi from Castanea sp., Pseudoplagiostoma corymbiae from Corymbia sp., Diaporthe eucalyptorum from Eucalyptus sp., Sporisorium andrewmitchellii from Enneapogon aff. lindleyanus, Myrmecridium banksiae from Banksia, and Pilidiella wangiensis from Eucalyptus sp. Several species are also described from South Africa, namely: Gondwanamyces wingfieldii from Protea caffra, Montagnula aloes from Aloe sp., Diaporthe canthii from Canthium inerne, Phyllosticta ericarum from Erica gracilis, Coleophoma proteae from Protea caffra, Toxicocladosporium strelitziae from Strelitzia reginae, and Devriesia agapanthi from Agapanthus africanus. Other species include Phytophthora asparagi from Asparagus officinalis (USA), and Diaporthe passiflorae from Passiflora edulis (South America). Furthermore, novel genera of coelomycetes include Chrysocrypta corymbiae from Corymbia sp. (Australia), Trinosporium guianense, isolated as a contaminant (French Guiana), and Xenosonderhenia syzygii, from Syzygium cordatum (South Africa). Pseudopenidiella piceae from Picea abies (Czech Republic), and Phaeocercospora colophospermi from Colophospermum mopane (South Africa) represent novel genera of hyphomycetes. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
    Keywords: ITS DNA barcodes ; LSU ; novel fungal species ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-12
    Description: Many fungal genera have been defined based on single characters considered to be informative at the generic level. In addition, many unrelated taxa have been aggregated in genera because they shared apparently similar morphological characters arising from adaptation to similar niches and convergent evolution. This problem is aptly illustrated in Mycosphaerella. In its broadest definition, this genus of mainly leaf infecting fungi incorporates more than 30 form genera that share similar phenotypic characters mostly associated with structures produced on plant tissue or in culture. DNA sequence data derived from the LSU gene in the present study distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. In some cases, these clades represent recognisable monophyletic lineages linked to well circumscribed anamorphs. This association is complicated, however, by the fact that morphologically similar form genera are scattered throughout the order (Capnodiales), and for some species more than one morph is expressed depending on cultural conditions and media employed for cultivation. The present study shows that Mycosphaerella s.s. should best be limited to taxa with Ramularia anamorphs, with other well defined clades in the Mycosphaerellaceae representing Cercospora, Cercosporella, Dothistroma, Lecanosticta, Phaeophleospora, Polythrincium, Pseudocercospora, Ramulispora, Septoria and Sonderhenia. The genus Teratosphaeria accommodates taxa with Kirramyces anamorphs, while other clades supported in the Teratosphaeriaceae include Baudoinea, Capnobotryella, Devriesia, Penidiella, Phaeothecoidea, Readeriella, Staninwardia and Stenella. The genus Schizothyrium with Zygophiala anamorphs is supported as belonging to the Schizothyriaceae, while Dissoconium and Ramichloridium appear to represent a distinct family.\nSeveral clades remain unresolved due to limited sampling. Mycosphaerella, which has hitherto been used as a term of convenience to describe ascomycetes with solitary ascomata, bitunicate asci and 1-septate ascospores, represents numerous genera and several families yet to be defined in future studies.
    Keywords: Cibiessia ; Colletogloeum ; Dissoconium ; Kirramyces ; Mycosphaerella ; Passalora ; Penidiella ; Phaeophleospora ; Phaeothecoidea ; Pseudocercospora ; Ramularia ; Readeriella ; Stenella ; Teratosphaeria ; Zasmidium
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-12
    Description: The Teratosphaeriaceae represents a recently established family that includes numerous saprobic, extremophilic, human opportunistic, and plant pathogenic fungi. Partial DNA sequence data of the 28S rRNA and RPB2 genes strongly support a separation of the Mycosphaerellaceae from the Teratosphaeriaceae, and also provide support for the Extremaceae and Neodevriesiaceae, two novel families including many extremophilic fungi that occur on a diversity of substrates. In addition, a multi-locus DNA sequence dataset was generated (ITS, LSU, Btub, Act, RPB2, EF-1\xce\xb1 and Cal) to distinguish taxa in Mycosphaerella and Teratosphaeria associated with leaf disease of Eucalyptus, leading to the introduction of 23 novel genera, \xef\xac\x81ve species and 48 new combinations. Species are distinguished based on a polyphasic approach, combining morphological, ecological and phylogenetic species concepts, named here as the Consolidated Species Concept (CSC). From the DNA sequence data generated, we show that each one of the \xef\xac\x81ve coding genes tested, reliably identify most of the species present in this dataset (except species of Pseudocercospora). The ITS gene serves as a primary barcode locus as it is easily generated and has the most extensive dataset available, while either Btub, EF-1\xce\xb1 or RPB2 provide a useful secondary barcode locus.
    Keywords: Eucalyptus ; multi-locus ; phylogeny ; species concepts ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-12
    Description: Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration.
    Keywords: Internal transcribed spacer ; nuclear ribosomal large subunit (nrLSU) ; Peronosporales ; phylogeny ; Pythiaceae
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...