GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Years
  • 1
    Keywords: Konferenzschrift
    Type of Medium: Book
    Pages: VII, 299 S , Ill., graph. Darst., Kt
    Series Statement: Journal of volcanology and geothermal research 177.2008,1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-31
    Description: Lake Ohrid shared by the Republics of Albania and Macedonia is formed by a tectonically active graben within the south Balkans and suggested to be the oldest lake in Europe. Several studies have shown that the lake provides a valuable record of climatic and environmental changes and a distal tephrostratigraphic record of volcanic eruptions from Italy. Fault structures identified in seismic data demonstrate that sediments have also the potential to record tectonic activity in the region. Here, we provide an example of linking seismic and sedimentological information with tectonic activity and historical documents. Historical documents indicate that a major earthquake destroyed the city of Lychnidus (today: city of Ohrid) in the early 6th century AD. Multichannel seismic profiles, parametric sediment echosounder profiles, and a 10.08m long sediment record from the western part of the lake indicate a 2m thick mass wasting deposit, which is tentatively correlated with this earthquake. The mass wasting deposit is chronologically well constrained, as it directly overlays the AD472/AD 512 tephra. Moreover, radiocarbon dates and cross correlation with other sediment sequences with similar geochemical characteristics of the Holocene indicate that the mass wasting event took place prior to the onset of the Medieval Warm Period, and is attributed it to one of the known earthquakes in the region in the early 6th century AD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-03
    Description: Steep slopes mantled by pyroclastic deposits are favorable areas prone to generate hazardous volcaniclastic flows. In Italy, such a setting is well represented in the Campania Region, where pyroclastic deposits from the explosive activity of the Neapolitan volcanoes (Ischia, Campi Flegrei, and Somma-Vesuvius) cover the Apennine range bordering the Campanian Plain. In order to provide a useful contribution to the mitigation and prevention of these calamitous natural events, this work presents a multidisciplinary approach to improve the understanding of the volcaniclastic flow hazard zonation in an Apennine area of 340 km 2 surrounding the Somma-Vesuvius volcano. The disruption proneness index (DPI) was calculated in order to identify the drainage basins potentially prone to generate volcaniclastic flows. This index is obtained by combining satellite and morphometric data in a geographic information system (GIS) environment. It is calculated for 1100 drainage basins, considering the main parameters influencing the slope stability (slope angle, basin shape factor, curvature, relative relief, aspect, and land cover). The land cover mapping is obtained from Landsat data and airborne high-resolution images, while the morphometric parameters are derived from a digital elevation model (DEM) with a cell size of 10 m. The result is a zonation map that classifies the drainage basins according to different degrees of proneness to generate volcaniclastic flows (low, moderate, high, and very high). The drainage basins falling within high and very high classes are 66%, while 28% fall in the moderate class, and the remaining 6% fall in the low proneness class.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-21
    Description: The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base- Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma– Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.
    Description: Published
    Description: 19–48
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Neapolitan volcanoes ; late Pleistocene ; explosive eruptions ; Somma–Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-22
    Description: A study of six tephra layers discovered in different deposits between 1600 and 2700 m a.s.l. in the Apennine chain in central Italy allowed precise stratigraphic constraints on environmental and climatic changes between ca. 4.5 and 3.8 cal ka BP. Chemical analyses allowed the correlation of these tephra layers with the eruptions of Agnano Mt Spina (AMST) from Phlegrean Field and Avellino (AVT) from Somma–Vesuvius. Major environmental changes in the high mountains of the Central Apennines occurred just after the deposition of the AMST and predate the deposition of the AVT. At this time, renewed growth of the Calderone Glacier occurred, marking the onset of the Apennine “Neoglacial”. The presence of the AMST and AVT enabled us to make a precise, physical correlation with other archives in central Italy. Synchronization of records between sites showed that the period intervening the deposition of the AMST and AVT layers coincided with environmental changes that were not always exactly in phase. This highlights the fact that stratigraphic correlations using only radiocarbon chronologies (the most common method used for dating archives during the Holocene) could produce erroneous correlation of events, giving rise to oversimplified paleoclimatic reconstructions.
    Description: Published
    Description: 236-247
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Tephrostratigraphy ; Holocene ; Central Italy ; Paleoclimate ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma–Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length , width ), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length , width ) and a shallower cylindrical conduit (diameter , dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of and at EU3 peak MDR, when the shallower cylinder had enlarged to a diameter of 60 m and a transition depth of 3000 m. The changes in feeding system geometry indicate a partitioning of the driving pressure of the eruption, which affected both magma movement to the surface and dyke growth. This implies that a significant portion of the magma injected from the magma chamber filled the enlarging dyke before it erupted to the surface. In this model, the lower dyke acted as a sort of magma “capacitor” in which the magma was stored briefly before accelerating to the cylindrical conduit and erupting. The capacitor effect of the lower dyke implies longer times of transit for the erupting magma, which also underwent several steps of decompression. On the other hand, the decompression of magma within the capacitor provided the driving pressure to maintain the flow into the upper cylindrical conduit, even as the base of the dyke started to close due to the drop in driving pressure from progressive emptying of the magma chamber. The shallower cylindrical conduit was shaped through the erosion of conduit wall rocks at and above the fragmentation level. Using the lithic volume and duration of EU3, the erosion rate of shallower cylindrical conduit was calculated at ∼5 × 103 m3/s. The outcomes of this work represent an important baseline for further petrologic and geophysical studies devoted to the comprehension of processes driving volcanic eruptions.
    Description: Published
    Description: 545-555
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-15
    Description: Public works in progress in the Campanian plain north of Somma-Vesuvius recently encountered the remains of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di Avellino eruption (3.8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rockmagnetic investigations supplemented the excavations. Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the village, located some 14 km to the north of the inferred vent, and penetrated into the dwellings without causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260– 320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. The coupling of structural damage and sedimentological analyses indicates that the currents were not destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe injury to humans and animals. The successful escape of the entire population is apparent from the lack of human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to condensation of water vapour released in the mixture by magma–water interaction.
    Description: Published
    Description: 408–421
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic density current ; Bronze Age ; magnetic fabric ; deposition temperature ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-03
    Description: With the aim to improve volcaniclastic flows hazard zonation and risk mitigation in volcanic areas, this work presents a GIS-based study on the Sorrentina Peninsula, located southwest of the main Neapolitan volcanoes (Ischia, Procida, Campi Flegrei, and Somma-Vesuvius; Campanian Plain, Southern Italy). This area has been heavily affected by historical events with more than 200 volcani - clastic flows recorded in the last 500 years. The study here proposed combines different information, including morphometry, geology, volcanology and land use for building a susceptibility index (named VFSI) able to rank the drainage basins potentially prone to generate volcaniclastic flows. The resulting susceptibility map classifies 488 drainage basins into three different classes (low, moderate and high)over an area of about 280 km2. The proposed method allows the rapid ranking of the different drainage basins, and is propaedeutic to detailed investigation on single basins for individuating areas more prone to colluvial cover failure and associated volumes of available material for volcaniclastic flow generation.
    Description: Published
    Description: 394-404
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Volcaniclastic flows, GIS, susceptibility index (VFSI), Sorrentina Peninsula, volcanic hazard, Neapolitan volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-21
    Description: Four cores from Balkans lakes Ohrid and Prespa were studied for recognition of tephra layers and cryptotephras, and the results presented along with the review of data from other two already published cores from Lake Ohrid. The six cores provide a previously unrealised tephrostratigraphic framework of the two lakes, and supply the first detailed tephrochronologic profile (composite) for the Balkans, which spans from the end of the Middle Pleistocene to the end of the Ancient Age (AD 472). A total of 12 tephra layers and cryptotephras were recognised in the cores. One is of Middle Pleistocene age (131 ky) and correlated to the marine tephra layer P-11 from Pantelleria Island. Eight volcanic layers are Upper Pleistocene in age, and encompass the period between ca. 107 ky and ca. 31 ky. This interval contains some of the main regional volcanic markers of the Central Mediterranean area, including X-6, X-5, Y-5 and Y-3 tephra layers. The other layers of this interval have been related to the marine tephra layers C20, Y-6 and C10, while one was for the first time recognised in distal areas and correlated to the Taurano eruption of probable Vesuvian origin. Three cryptotephras were of Holocene age. Two of which have been correlated to Mercato and AD 472 eruptions of Somma-Vesuvius, while the third has been correlated to the FL eruption from Mount Etna. These recognitions provide a link of the Ohrid and Prespa lacustrine successions to other archives of the Central Mediterranean area, like South Adriatic, Ionian, and South Tyrrhenian Seas, lakes of Southern Italy (Lago Grande di Monticchio, Pantano di San Gregorio Magno and Lago di Pergusa) and Balkans (Lake Shkodra).
    Description: Published
    Description: 3931-3967
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: isotopic geochemistry ; lake sediments ; paleoclimate proxies ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-22
    Description: Mt. Etna is renowned for being the most active and highest volcano in Europe. Lava flows and weak explosive eruptions characterize its activity, but intermediate to large explosive eruptions have punctuated its eruptive history. Marine and lacustrine distal records are excellent archives for the recognition of past large explosive activity at Mt. Etna, as testified by the recognition of distal tephra layers of Pleistocene to Holocene age. These data are, to date, neither organised nor correlated to the proximal stratigraphic and chronological records. Here, we propose the reorganisation and correlation of the distal tephra layers from Mt. Etna in order to decipher the timings and frequency of its major explosive eruptions.
    Description: Published
    Description: Lisbona
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: restricted
    Keywords: Mount Etna ; Tephrostratigraphy ; Explosive eruptions ; Mediterranean area
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...