GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Boreal Environment Research Publishing Board
    Publication Date: 2012-02-03
    Description: A refined Semtner 0-layer sea-ice model (ESIM1) is presented and applied to the Baltic landfast sea-ice. The physical model is capable of simulating seasonal changes of snow and ice thickness. Particular attention is paid to reproducing the snow-ice and the super-imposed-ice formation which play important roles in the total mass balance of the Baltic sea-ice. The model prognostic variables include all kinds of ice and snow layers that may be present during a Baltic landfast ice season and, in general, in every coastal area of an ice-covered ocean. The assessment of the model capabilities was done for 1979–1993 for four different stations in the Baltic Sea. A sensitivity test stresses the relevant role of some of the physical parameters, such as the oceanic heat flux, while a scenario analysis highlights the robustness of the model to perturbed physical forcing. Our results show that one of the key variables in modelling sea-ice thermodynamics is the snow layer and its metamorphism, and including the meteoric ice dynamics into a sea ice model is relevant to properly simulate any ice season, also in view of climate change scenarios
    Description: Italian FISR project VECTOR and Centro Euro-Mediterraneo per i Cambiamenti Climatici
    Description: Published
    Description: 68-80
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: sea-ice ; biogeochemistry ; numerical model ; BFM ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: A fully prognostic 1-D thermodynamic model, functional for studies of sea-ice biogeochemistry is developed to better understand the physical processes and the interactions between the environment and the sea-ice ecosystem. The physical model is capable of simulating seasonal changes of snow and ice thickness. Particular attention is paid to reproduce the snow-ice and the superimposed ice formation which play important roles in the dynamics of sea ice algae. The assessment of the model capabilities is done in 1979--1993 at four different stations in the Baltic Sea. A sensitivity analysis stresses the importance of adequate surface forcing functions to properly simulate the onset of sea ice. Our results show that thickness of the ice layers and timing of the melting are in good agreement with the observed data and confirm that one of the key variables in modelling sea-ice thermodynamics is the snow layer and its metamorphism.
    Description: This study is supported by the VECTOR project, funded by the Italian Ministry of the University and the Scientific Research. Collaboration with the Finnish Institute of Marine Research has started thanks to the “Marco Polo” scholarship awarded by the University of Bologna to the first author and it is going on in the framework of EUROceans, Network of Excellence. NCEP Reanalysis and ECMWF data have been provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. The observed snow and ice thickness data have been provided by the Ice Service at the Finnish Institute of Marine Research. We are particularly grateful to Ari Seinä for support with the observations.
    Description: Unpublished
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: sea-ice ; biogeochemistry ; numerical model ; BFM ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: A refined Semtner 0-layer sea-ice model (ESIM1) is presented and applied to the Baltic landfast sea-ice. The physical model is capable of simulating seasonal changes of snow and ice thickness. Particular attention is paid to reproducing the snow-ice and the super-imposed-ice formation which play important roles in the total mass balance of the Baltic sea-ice. The model prognostic variables include all kinds of ice and snow layers that may be present during a Baltic landfast ice season and, in general, in every coastal area of an ice-covered ocean. The assessment of the model capabilities was done for 1979–1993 for four different stations in the Baltic Sea. A sensitivity test stresses the relevant role of some of the physical parameters, such as the oceanic heat flux, while a scenario analysis highlights the robustness of the model to perturbed physical forcing. Our results show that one of the key variables in modelling sea-ice thermodynamics is the snow layer and its metamorphism, and including the meteoric ice dynamics into a sea ice model is relevant to properly simulate any ice season, also in view of climate change scenarios
    Description: Centro Euro Mediterraneo per i Cambiamenti Climatici. Eur-OCEANS
    Description: In press
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: sea-ice ; biogeochemistry ; numerical model ; BFM ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: This work introduces a novel approach for the modelling and coupling of sea ice biology to sea ice physics. The central concept of the coupling is the definition of the Biologically Active Layer, which is the time-varying fraction of sea ice that is connected to the ocean via brine pockets and channels, and acts as a rich habitat for many microorganisms. A simple but comprehensive physical model of the sea ice thermohalodynamics is coupled to a novel sea ice microalgal model of growth in the framework of the Biogeochemical Flux Model. The physical model provides the key physical properties of the Biologically Active Layer and the biological model simulates the physiological and ecological response of the algal community to the physical environment. Numerical simulations of chl-a were compared with observations at two different ice stations, in the Baltic and off the coast of Greenland, showing that this new coupling structure is sufficiently generic to represent well the temporal and spatial distribution of sea ice algae during the whole ice season at both sites. This model implementation and coupling structure is viable as a new component of General Circulation Models, allowing for estimates of the role and importance of sea ice biology in the local and global carbon cycle.
    Description: Italian FISR project VECTOR
    Description: Published
    Description: 89-104
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: sea ice ; ecosystem modelling ; BFM ; Arctic ; Baltic ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...