GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Norddeutscher Trog ; Tiefengeothermie ; Dreidimensionale Seismik
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (81 Seiten, 6,12 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMWi 0324065 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: The application of distributed acoustic sensing in borehole measurements allows for the use of fibre optic cables to measure strain. This is more efficient in terms of time and costs compared with the deploying of conventional borehole seismometers. Nevertheless, one known drawback for temporary deployment is represented by the freely hanging wireline cable slapping and ringing inside the casing, which introduces additional coherent coupling noise to the data. The present study proposes an explanation for the mechanism of noise generation and draws an analogy with similar wave propagation processes and phenomena, such as ghost waves in marine seismics. This observation allows to derive a ringing noise filter function, to study its behaviour and to consider known effects of the gauge length filter. After examining existing methods aimed at eliminating ringing noise and results of their application, we propose a two‐step approach: (1) developing a denoising method based on a matching pursuit decomposition with Gabor atoms and (2) subtracting the noise model for imaging improvement. The matching pursuit method focuses on decomposing the original input signal into a weighted sum of Gabor functions. Analysing Gabor atoms properties for frequency, amplitude and position in time provides the opportunity to distinguish parts of the original signal denoting noise caused by the vibrating cable. The matching pursuit decomposition applied to the distributed acoustic sensing‐vertical seismic profiling data at the geothermal test site Groß Schönebeck provides a versatile processing instrument for noise suppression.
    Description: German Federal Ministry of Economic Affairs and Energy
    Keywords: 550 ; Borehole geophysics ; Distributed acoustic sensing ; Noise ; Signal processing ; Vertical seismic profiling
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-03
    Description: At the geothermal test site near Groß Schönebeck (NE German Basin), a new 3D seismic reflection survey was conducted to study geothermal target layers at around 4 km depth and 150°C. We present a workflow for seismic facies classification and modelling which is applied to a prospective sandstone horizon within the Rotliegend formation. Signal attributes are calculated along the horizon using the continuous Morlet wavelet transform. We use a short mother wavelet to allow for the temporal resolution of the relatively short reflection signals to be analysed. Time‐frequency domain data patterns form the input of a neural network clustering using self‐organizing maps. Neural model patterns are adopted during iterative learning to simulate the information inherent in the input data. After training we determine a gradient function across the self‐organizing maps and apply an image processing technique called watershed segmentation. The result is a pattern clustering based on similarities in wavelet transform characteristics. Three different types of wavelet transform patterns were found for the sandstone horizon. We apply seismic waveform modelling to improve the understanding of the classification results. The modelling tests indicate that thickness variations have a much stronger influence on the wavelet transform response of the sandstone horizon compared with reasonable variations of seismic attenuation. In our interpretation, the assumed thickness variations could be a result of variable paleo‐topography during deposition of predominantly fluvial sediments. A distinct seismic facies distribution is interpreted as a system of thicker paleo‐channels deposited within a deepened landscape. The results provide constraints for the ongoing development of the geothermal test site.
    Description: Federal Ministry for Economic Affairs and Energy http://dx.doi.org/10.13039/501100006360
    Keywords: 622.15 ; 550.83 ; Full waveform ; Interpretation ; Reservoir geophysics
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-01
    Description: As part of the German continental seismic reflection program (Deutsches Kontinentales Reflexionsseismisches Programm, DEKORP), three large seismic traverses (with the sub-profiles: DEKORP'84-2S and '86-2N; DEKORP'88-9N; DEKORP'90-3A and '90-3B) were measured in the state of Hesse in Germany. The main research topic of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. Thus, for acquisition, strong sources were used to image in these depths, resulting in an excellent S/N ratio, but the main focus was not on the uppermost kilometres. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-deep and deep geothermal projects). The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas where only insufficient geological data exist (i.e. only few deep boreholes). In order to close or reduce these knowledge gaps, these DEKORP lines were reprocessed in 2019/20. The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. Nevertheless, deeper structures were also reinterpreted and compared to previous interpretations. The results were directly incorporated into the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0, BMWi-FKZ: 0325944). In order to achieve these goals and in view of the fact that today's processing methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was applied for all DEKORP profiles traversing the state of Hesse. In comparison to the original processing, additional processing steps like CRS instead of CDP stacking, turning-ray tomography and prestack depth migration were carried out. We present exemplary results of the reprocessing as well as initial geological reinterpretations for the profile DEKORP'88-9N.
    Description: poster
    Keywords: ddc:550 ; DEKORP ; Reprocessing of 2D seismic profiles ; Hesse ; Upper Rhine Graben ; DEKORP'88-9N
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-01
    Description: The German continental seismic reflection program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out in the years between 1984 and 1999. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and others. The resulting DEKORP database consists of approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic survey covering ca. 400 km², recorded in close connection with the German Continental Deep Drilling Program (KTB). Nowadays, re-recording of these seismic traverses in the same extent and quality would often not be possible anymore due to increased acquisition costs and tightened permission requirements. Therefore these datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Currently, many of the original raw data are still stored on old storage media and in formats, which can only be read by special devices, programs and experts. To prevent the final loss of this valuable geoscientific treasure an initiative at GFZ transcripts all relevant DEKORP data to modern formats and media. Over the last few years the demand for DEKORP data continuously increased. Several academic institutions and commercial companies reprocess and/or reinterpret these data, which lead to significant improvements in the quality of the results. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction, disposal of nuclear waste and more. To simplify the data access for the scientific as well as for the commercial geo-community, a well-structured provision and utilisation concept is being developed. The concept includes so-called data publications with DOIs, a defined license model and automised retrieval for each of the surveys providing raw data, processed data, meta data, related links and more. The plan aims to have all relevant DEKORP datasets compiled and prepared for access via web interface till 2022.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...