GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Medical statistics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (574 pages)
    Edition: 2nd ed.
    ISBN: 9783030163990
    Series Statement: Statistics for Biology and Health Series
    DDC: 610.727
    Language: English
    Note: Intro -- Preface -- Why Read This Book? -- Intended Audience -- Other Sources -- Structure -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 Diagnosis, Prognosis, and Therapy Choice in Medicine -- 1.1.1 Predictions for Personalized Evidence-Based Medicine -- 1.2 Statistical Modeling for Prediction -- 1.2.1 Model Assumptions -- 1.2.2 Reliability of Predictions: Aleatory and Epistemic Uncertainty -- 1.2.3 Sample Size -- 1.3 Structure of the Book -- 1.3.1 Part I: Prediction Models in Medicine -- 1.3.2 Part II: Developing Internally Valid Prediction Models -- 1.3.3 Part III: Generalizability of Prediction Models -- 1.3.4 Part IV: Applications -- Prediction Models in Medicine -- 2 Applications of Prediction Models -- 2.1 Applications: Medical Practice and Research -- 2.2 Prediction Models for Public Health -- 2.2.1 Targeting of Preventive Interventions -- 2.2.2 *Example: Prediction for Breast Cancer -- 2.3 Prediction Models for Clinical Practice -- 2.3.1 Decision Support on Test Ordering -- 2.3.2 *Example: Predicting Renal Artery Stenosis -- 2.3.3 Starting Treatment: The Treatment Threshold -- 2.3.4 *Example: Probability of Deep Venous Thrombosis -- 2.3.5 Intensity of Treatment -- 2.3.6 *Example: Defining a Poor Prognosis Subgroup in Cancer -- 2.3.7 Cost-Effectiveness of Treatment -- 2.3.8 Delaying Treatment -- 2.3.9 *Example: Spontaneous Pregnancy Chances -- 2.3.10 Surgical Decision-Making -- 2.3.11 *Example: Replacement of Risky Heart Valves -- 2.4 Prediction Models for Medical Research -- 2.4.1 Inclusion and Stratification in a RCT -- 2.4.2 *Example: Selection for TBI Trials -- 2.4.3 Covariate Adjustment in a RCT -- 2.4.4 Gain in Power by Covariate Adjustment -- 2.4.5 *Example: Analysis of the GUSTO-III Trial -- 2.4.6 Prediction Models and Observational Studies -- 2.4.7 Propensity Scores. , 2.4.8 *Example: Statin Treatment Effects -- 2.4.9 Provider Comparisons -- 2.4.10 *Example: Ranking Cardiac Outcome -- 2.5 Concluding Remarks -- 3 Study Design for Prediction Modeling -- 3.1 Studies for Prognosis -- 3.1.1 Retrospective Designs -- 3.1.2 *Example: Predicting Early Mortality in Esophageal Cancer -- 3.1.3 Prospective Designs -- 3.1.4 *Example: Predicting Long-term Mortality in Esophageal Cancer -- 3.1.5 Registry Data -- 3.1.6 *Example: Surgical Mortality in Esophageal Cancer -- 3.1.7 Nested Case-Control Studies -- 3.1.8 *Example: Perioperative Mortality in Major Vascular Surgery -- 3.2 Studies for Diagnosis -- 3.2.1 Cross-sectional Study Design and Multivariable Modeling -- 3.2.2 *Example: Diagnosing Renal Artery Stenosis -- 3.2.3 Case-Control Studies -- 3.2.4 *Example: Diagnosing Acute Appendicitis -- 3.3 Predictors and Outcome -- 3.3.1 Strength of Predictors -- 3.3.2 Categories of Predictors -- 3.3.3 Costs of Predictors -- 3.3.4 Determinants of Prognosis -- 3.3.5 Prognosis in Oncology -- 3.4 Reliability of Predictors -- 3.4.1 Observer Variability -- 3.4.2 *Example: Histology in Barrett's Esophagus -- 3.4.3 Biological Variability -- 3.4.4 Regression Dilution Bias -- 3.4.5 *Example: Simulation Study on Reliability of a Binary Predictor -- 3.4.6 Choice of Predictors -- 3.5 Outcome -- 3.5.1 Types of Outcome -- 3.5.2 Survival End Points -- 3.5.3 *Examples: 5-Year Relative Survival in Cancer Registries -- 3.5.4 Composite End Points -- 3.5.5 *Example: Composite End Points in Cardiology -- 3.5.6 Choice of Prognostic Outcome -- 3.5.7 Diagnostic End Points -- 3.5.8 *Example: PET Scans in Esophageal Cancer -- 3.6 Phases of Biomarker Development -- 3.7 Statistical Power and Reliable Estimation -- 3.7.1 Sample Size to Identify Predictor Effects -- 3.7.2 Sample Size for Reliable Modeling -- 3.7.3 Sample Size for Reliable Validation. , 3.8 Concluding Remarks -- 4 Statistical Models for Prediction -- 4.1 Continuous Outcomes -- 4.1.1 *Examples of Linear Regression -- 4.1.2 Economic Outcomes -- 4.1.3 *Example: Prediction of Costs -- 4.1.4 Transforming the Outcome -- 4.1.5 Performance: Explained Variation -- 4.1.6 More Flexible Approaches -- 4.2 Binary Outcomes -- 4.2.1 R2 in Logistic Regression Analysis -- 4.2.2 Calculation of R2 on the Log-Likelihood Scale -- 4.2.3 Models Related to Logistic Regression -- 4.2.4 Bayes Rule -- 4.2.5 Prediction with Naïve Bayes -- 4.2.6 Calibration and Naïve Bayes -- 4.2.7 *Logistic Regression and Bayes -- 4.2.8 Machine Learning: More Flexible Approaches -- 4.2.9 Classification and Regression Trees -- 4.2.10 *Example: Mortality in Acute MI Patients -- 4.2.11 Advantages and Disadvantages of Tree Models -- 4.2.12 Trees Versus Logistic Regression Modeling -- 4.2.13 *Other Methods for Binary Outcomes -- 4.2.14 Summary of Binary Outcomes -- 4.3 Categorical Outcomes -- 4.3.1 Polytomous Logistic Regression -- 4.3.2 Example: Histology of Residual Masses -- 4.3.3 *Alternative Models -- 4.3.4 *Comparison of Modeling Approaches -- 4.4 Ordinal Outcomes -- 4.4.1 Proportional Odds Logistic Regression -- 4.4.2 *Relevance of the Proportional Odds Assumption in RCTs -- 4.5 Survival Outcomes -- 4.5.1 Cox Proportional Hazards Regression -- 4.5.2 Prediction with Cox Models -- 4.5.3 Proportionality Assumption -- 4.5.4 Kaplan-Meier Analysis -- 4.5.5 *Example: Impairment After Treatment of Leprosy -- 4.5.6 Parametric Survival -- 4.5.7 *Example: Replacement of Risky Heart Valves -- 4.5.8 Summary of Survival Outcomes -- 4.6 Competing Risks -- 4.6.1 Actuarial and Actual Risks -- 4.6.2 Absolute Risk and the Fine & -- Gray Model -- 4.6.3 Example: Prediction of Coronary Heart Disease Incidence -- 4.6.4 Multistate Modeling -- 4.7 Dynamic Predictions. , 4.7.1 Multistate Models and Landmarking -- 4.7.2 Joint Models -- 4.8 Concluding Remarks -- 5 Overfitting and Optimism in Prediction Models -- 5.1 Overfitting and Optimism -- 5.1.1 Example: Surgical Mortality in Esophagectomy -- 5.1.2 Variability Within One Center -- 5.1.3 Variability Between Centers: Noise Versus True Heterogeneity -- 5.1.4 Predicting Mortality by Center: Shrinkage -- 5.2 Overfitting in Regression Models -- 5.2.1 Model Uncertainty and Testimation Bias -- 5.2.2 Other Modeling Biases -- 5.2.3 Overfitting by Parameter Uncertainty -- 5.2.4 Optimism in Model Performance -- 5.2.5 Optimism-Corrected Performance -- 5.3 Bootstrap Resampling -- 5.3.1 Applications of the Bootstrap -- 5.3.2 Bootstrapping for Regression Coefficients -- 5.3.3 Bootstrapping for Prediction: Optimism Correction -- 5.3.4 Calculation of Optimism-Corrected Performance -- 5.3.5 *Example: Stepwise Selection in 429 Patients -- 5.4 Cost of Data Analysis -- 5.4.1 *Degrees of Freedom of a Model -- 5.4.2 Practical Implications -- 5.5 Concluding Remarks -- 6 Choosing Between Alternative Models -- 6.1 Prediction with Statistical Models -- 6.1.1 Testing of Model Assumptions and Prediction -- 6.1.2 Choosing a Type of Model -- 6.2 Modeling Age-Outcome Relations -- 6.2.1 *Age and Mortality After Acute MI -- 6.2.2 *Age and Operative Mortality -- 6.2.3 *Age-Outcome Relations in Other Diseases -- 6.3 Head-to-Head Comparisons -- 6.3.1 StatLog Results -- 6.3.2 *Cardiovascular Disease Prediction Comparisons -- 6.3.3 *Traumatic Brain Injury Modeling Results -- 6.4 Concluding Remarks -- Developing Valid Prediction Models -- 7 Missing Values -- 7.1 Missing Values and Prediction Research -- 7.1.1 Inefficiency of Complete Case Analysis -- 7.1.2 Interpretation of CC Analyses -- 7.1.3 Missing Data Mechanisms -- 7.1.4 Missing Outcome Data -- 7.1.5 Summary Points. , 7.2 Prediction Under MCAR, MAR and MNAR Mechanisms -- 7.2.1 Missingness Patterns -- 7.2.2 Missingness and Estimated Regression Coefficients -- 7.2.3 Missingness and Estimated Performance -- 7.3 Dealing with Missing Values in Regression Analysis -- 7.3.1 Imputation Principle -- 7.3.2 Simple and More Advanced Single Imputation Methods -- 7.3.3 Multiple Imputation -- 7.4 Defining the Imputation Model -- 7.4.1 Types of Variables in the Imputation Model -- 7.4.2 *Transformations of Variables -- 7.4.3 Imputation Models for SI and MI: X and y -- 7.4.4 Summary Points -- 7.5 Success of Imputation Under MCAR, MAR and MNAR -- 7.5.1 Imputation in a Simple Model -- 7.5.2 Other Simulation Results -- 7.5.3 *Multiple Predictors -- 7.6 Guidance to Dealing with Missing Values in Prediction Research -- 7.6.1 Patterns of Missingness -- 7.6.2 Simple Approaches -- 7.6.3 More Advanced Approaches -- 7.6.4 Maximum Fraction of Missing Values Before Omitting a Predictor -- 7.6.5 Single or Multiple Imputation for Predictor Effects? -- 7.6.6 Single or Multiple Imputation for Deriving Predictions? -- 7.6.7 Missings and Predictions for New Patients -- 7.6.8 *Performance Across Multiple Imputed Data Sets -- 7.6.9 Reporting of Missing Values in Prediction Research -- 7.7 Concluding Remarks -- 7.7.1 Summary Statements -- 7.7.2 *Available Software and Challenges -- 8 Case Study on Dealing with Missing Values -- 8.1 Introduction -- 8.1.1 Aim of the IMPACT Study -- 8.1.2 Patient Selection -- 8.1.3 Potential Predictors -- 8.1.4 Coding and Time Dependency of Predictors -- 8.2 Missing Values in the IMPACT Study -- 8.2.1 Missing Values in Outcome -- 8.2.2 Quantification of Missingness of Predictors -- 8.2.3 Patterns of Missingness -- 8.3 Imputation of Missing Predictor Values -- 8.3.1 Correlations Between Predictors -- 8.3.2 Imputation Model -- 8.3.3 Distributions of Imputed Values. , 8.3.4 *Multilevel Imputation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Medical statistics. ; Medicine--Research--Statistical methods. ; Evidence-based medicine--Statistical methods. ; Clinical trials--Statistical methods. ; Regression analysis. ; Models, Statistical. ; Prognosis. ; Regression Analysis. ; Statistiques médicales. ram. ; Médecine--Recherche--Statistiques. ram. ; Médecine fondée sur la preuve--statistiques et données numériques. fmesh. ; Études cliniques--Statistiques. ram. ; Analyse de régression. fmesh. ; Electronic books.
    Description / Table of Contents: Despite advances in statistical approaches towards clinical outcome prediction, these innovations are insufficiently utilized in medical research. This book provides information on how modern statistical concepts and regression methods can be applied.
    Type of Medium: Online Resource
    Pages: 1 online resource (507 pages)
    Edition: 1st ed.
    ISBN: 9780387772448
    Series Statement: Statistics for Biology and Health Series
    DDC: 610.727
    Language: English
    Note: Steyerberg_FM.pdf -- Steyerberg_Ch01.pdf -- Steyerberg_Ch02.pdf -- Steyerberg_Ch03.pdf -- Steyerberg_Ch04.pdf -- Steyerberg_Ch05.pdf -- Steyerberg_Ch06.pdf -- Steyerberg_Ch07.pdf -- Steyerberg_Ch08.pdf -- Steyerberg_Ch09.pdf -- Steyerberg_Ch10.pdf -- Steyerberg_Ch11.pdf -- Steyerberg_Ch12.pdf -- Steyerberg_Ch13.pdf -- Steyerberg_Ch14.pdf -- Steyerberg_Ch15.pdf -- Steyerberg_Ch16.pdf -- Steyerberg_Ch17.pdf -- Steyerberg_Ch18.pdf -- Steyerberg_Ch19.pdf -- Steyerberg_Ch20.pdf -- Steyerberg_Ch21.pdf -- Steyerberg_Ch22.pdf -- Steyerberg_Ch23.pdf -- Steyerberg_Ch24.pdf -- Steyerberg_References.pdf -- Steyerberg_Index.pdf.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2323
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The success of parathyroid surgery is determined by the identification and removal of all parathyroid tumors. Parathyroid tumors accumulate and retain 2-methoxyisobutylisonitrile (MIBI) labeled with technetium-99m. Intravenous injection of this radiopharmacon prior to parathyroid surgery allows identification of parathyroid tumors with a hand-held gamma detector. To assess the value of this technique, a case–control study was performed with 62 patient having nuclear-guided parathyroidectomy and 60 patients having conventional parathyroid explorations. The sensitivity rates of the MIBI probe in single and multiple gland disease were 84.6% and 63.0%, respectively. Rates of success, temporary and permanent hypoparathyroidism, and injury of the recurrent laryngeal nerve were similar in patients who underwent probe-guided surgery and those who had conventional surgery. In conclusion, although the MIBI probe appears to be a valuable tool in parathyroid surgery, its use has not improved the outcome of such surgery at our institution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2323
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Conventional adrenalectomy requires relatively large incisions. To assess the value of retroperitoneal endoscopic adrenalectomy, a case–control study was performed comparing the endoscopic technique to conventional posterior adrenalectomy. All patients had adrenal tumors less than 7 cm in diameter. Endoscopic retroperitoneal adrenalectomy required more operative time (90 vs. 60 minutes, p 〈 0.0001) than the open approach but was associated with less blood loss (20 vs. 125 ml, p 〈 0.0001). Endoscopic adrenalectomy caused less pain postoperatively ( p = 0.0005) and was associated with fewer complications ( p = 0.035). The hospital stay was shorter after endoscopic adrenalectomy than after open adrenalectomy ( p 〈 0.0001). In conclusion, we advocate endoscopic retroperitoneal adrenalectomy in patients with small adrenal tumors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...