GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (β1-4) Gal (α1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (α1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pglB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pglB2 polymorphisms were not found in strain C311♯3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311♯3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311♯3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311♯3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311♯3 and other strains. We also present evidence that pglG, pglH and pglB2 are potentially phase variable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS immunology and medical microbiology 34 (2002), S. 0 
    ISSN: 1574-695X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Neisseria meningitidis expresses a range of lipooligosaccharide (LOS) structures, comprising of at least 13 immunotypes (ITs). Meningococcal LOS is subject to phase variation of its terminal structures allowing switching between ITs, which is proposed to have functional significance in disease. The objectives of this study were to investigate the repertoire of structures that can be expressed in clinical isolates, and to examine the role of phase-variable expression of LOS genes during invasive disease. Southern blotting was used to detect the presence of LOS biosynthetic genes in two collections of meningococci, a global set of strains previously assigned to lineages of greater or lesser virulence, and a collection of local clinical isolates which included paired throat and blood isolates from individual patients. Where the phase-variable genes lgtA, lgtC or lgtG were identified, they were amplified by PCR and the homopolymeric tracts, responsible for their phase-variable expression, were sequenced. The results revealed great potential for variation between alternate LOS structures in the isolates studied, with most strains capable of expressing several alternative terminal structures. The structures predicted to be currently expressed by the genotype of the strains agreed well with conventional immunotyping. No correlation was observed between the structural repertoire and virulence of the isolate. Based on the potential for LOS phase variation in the clinical collection and observations with the paired patient isolates, our data suggest that phase variation of LOS structures is not required for translocation between distinct compartments in the host.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-11
    Description: Atypical enteropathogenic Escherichia coli (aEPEC) causes endemic diarrhea, diarrheal outbreaks, and persistent diarrhea in humans, but the mechanism by which aEPEC causes disease is incompletely understood. Virulence regulators and their associated regulons, which often include adhesins, play key roles in the expression of virulence factors in enteric pathogenic bacteria. In this study we identified a transcriptional regulator, RalR, in the rabbit-specific aEPEC strain, E22 (O103:H2) and examined its involvement in the regulation of virulence. Microarray analysis and quantitative real-time reverse transcription-PCR demonstrated that RalR enhances the expression of a number of genes encoding virulence-associated factors, including the Ral fimbria, the Aap dispersin, and its associated transport system, and downregulates several housekeeping genes, including fliC . These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins and by adherence and motility assays. To investigate the mechanism of RalR-mediated activation, we focused on its most highly upregulated target operons, ralCDEFGHI and aap . By using primer extension, electrophoretic mobility shift assay, and mutational analysis, we identified the promoter and operator sequences for these two operons. By employing promoter- lacZ reporter systems, we demonstrated that RalR activates the expression of its target genes by binding to one or more 8-bp palindromic sequences (with the consensus of TGTGCACA) located immediately upstream of the promoter core regions. Importantly, we also demonstrated that RalR is essential for virulence since infection of rabbits with E22 carrying a knockout mutation in the ralR gene completely abolished its ability to cause disease.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-18
    Description: Kingella kingae is a common etiological agent of pediatric osteoarticular infections. While current research has expanded our understanding of K. kingae pathogenesis, there is a paucity of knowledge about host-pathogen interactions and virulence gene regulation. Many host-adapted bacterial pathogens contain phase variable DNA methyltransferases ( mod genes), which can control expression of a regulon of genes (phasevarion) through differential methylation of the genome. Here, we identify a phase variable type III mod gene in K. kingae , suggesting that phasevarions operate in this pathogen. Phylogenetic studies revealed that there are two active modK alleles in K. kingae . Proteomic analysis of secreted and surface-associated proteins, quantitative PCR, and a heat shock assay comparing the wild-type modK1 ON (i.e., in frame for expression) strain to a modK1 OFF (i.e., out of frame) strain revealed three virulence-associated genes under ModK1 control. These include the K. kingae toxin rtxA and the heat shock genes groEL and dnaK . Cytokine expression analysis showed that the interleukin-8 (IL-8), IL-1β, and tumor necrosis factor responses of THP-1 macrophages were lower in the modK1 ON strain than in the modK1 :: kan mutant. This suggests that the ModK1 phasevarion influences the host inflammatory response and provides the first evidence of this phase variable epigenetic mechanism of gene regulation in K. kingae .
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes bloody diarrhea and hemolytic-uremic syndrome (HUS) and is the most prevalent E. coli serotype associated with food-borne illness worldwide. This pathogen is transmitted via the fecal-oral route and has a low infectious dose that has been estimated to be between 10 and 100 cells. We and others have previously identified three prophage-encoded AraC-like transcriptional regulators, PatE, PsrA, and PsrB in the EHEC O157:H7 EDL933 strain. Our analysis showed that PatE plays an important role in facilitating survival of EHEC under a number of acidic conditions, but the contribution of PsrA and PsrB to acid resistance (AR) was unknown. Here, we investigated the involvement of PsrA and PsrB in the survival of E. coli O157:H7 in acid. Our results showed that PsrB, but not PsrA, enhanced the survival of strain EDL933 under various acidic conditions. Transcriptional analysis using promoter- lacZ reporters and electrophoretic mobility shift assays demonstrated that PsrB activates transcription of the hdeA operon, which encodes a major acid stress chaperone, by interacting with its promoter region. Furthermore, using a mouse model, we showed that expression of PsrB significantly enhanced the ability of strain EDL933 to overcome the acidic barrier of the mouse stomach. Taken together, our results indicate that EDL933 acquired enhanced acid tolerance via horizontally acquired regulatory genes encoding transcriptional regulators that activate its AR machinery.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-10
    Description: Several human-adapted bacterial pathogens use a phasevarion (ie, a phase-variable regulon) to rapidly and reversibly regulate the expression of many genes, which include known virulence factors, yet the influence of phasevarion-mediated regulation in pathogenesis remains poorly understood. Here we examine the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on pathogenesis and disease severity in a chinchilla model of experimental otitis media. Chinchillas were challenged with NTHI variant populations that were either inoculated ON and remained ON, inoculated OFF and shifted ON, or inoculated OFF and remained OFF, within the middle ear. We show that populations that shift from OFF to ON within the middle ear induce significantly greater disease severity than populations that are unable to shift. These observations support the importance of phasevarion switching in NTHI pathogenesis and the necessity to considered phasevarion regulation when developing methods to treat and prevent infection.
    Print ISSN: 0022-1899
    Electronic ISSN: 1537-6613
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-19
    Description: AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli , enteroaggregative E. coli , and Citrobacter rodentium . Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium . Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA . Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...