GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 23 (1984), S. 6649-6654 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 19 (1980), S. 2047-2065 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The problem of adequately correcting thermal titration curves for heat losses in isoperibolic microcalorimeters during rapid reactions in small volumes has been examined. With a data-acquisition system for the simultaneous encoding of changes in heat, pH, and time linked directly to a DEC-20 computer, various possible mechanisms for heat-loss corrections were tested using computer-modeling techniques. Models expressed by series exponential terms, as commonly used in linear pharmacokinetics to describe the time-course concentration of a drug, proved to be inadequate to reconstruct the “adiabatic” thermal curve, since its apparent magnitude increased with the time taken for its generation. However, models based on mechanisms incorporating at least two heat sinks, one of which can be equated to the surroundings, have proved successful. The differential equations descriptive of the various models examined have rate constants characteristic of the reaction cell and its inserts, the reaction volume, and the calorimeter used. These can be evaluated by a curve-fitting algorithm (MLAB) using standard thermal-titration data (the neutralization of HCL with KOH). Once the rate constants are known, the differential equation solver of MLAB is then used to deconvolute any time: heat-change matrix to that which would obtain in the absence of heat loss (the “adiabatic” state). With an appropriate differential equation model, the magnitude of the corrected heat change is independent of the time taken for its production and so-called best model(s) have been judged on the basis of Akaike's information criterion. The application of the heat-loss correction procedure to the thermal titration of chymotrypsinogen is illustrated.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...