GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam :Elsevier,
    Keywords: Planets. ; Satellites. ; Electronic books.
    Description / Table of Contents: Planets and Moons covers topics relating to the physics of the major planetary bodies in the solar system, starting with an introductory description of the solar system and collection of pertinent data, continuing with a discussion of the early history of the planets, and finishing with articles about planet dynamics, thermal evolution of planets and satellites, and descriptions of their magnetic fields and the processes that generate them. In addition to providing a review on the solid planets and the satellites, this volume addresses the interactions of solid surfaces and atmospheres as well as the roles of water and ice in shaping the surfaces of planetary bodies. Self-contained volume starts with an overview of the subject then explores each topic with in depth detail Extensive reference lists and cross references with other volumes to facilitate further research Full-color figures and tables support the text and aid in understanding Content suited for both the expert and non-expert.
    Type of Medium: Online Resource
    Pages: 1 online resource (657 pages)
    Edition: 1st ed.
    ISBN: 9780444535740
    DDC: 559.9
    Language: English
    Note: Cover -- PLANETS AND MOONS -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editorial Advisory Board -- Chapter 1 Overview -- 1.1 Introduction -- 1.2 Our Planetary System -- 1.3 Planetary Missions -- 1.4 Planet and Satellite Orbits and Rotation States -- 1.5 Composition and Interior Structure of Planets -- 1.6 Surfaces and Atmospheres -- 1.7 Energy Balance and Evolution -- 1.8 Magnetic Fields and Field Generation -- 1.9 Origin of the Solar System -- 1.10 Concluding Remarks -- References -- Relevant Websites -- Chapter 2 Interior Structure, Composition, and Mineralogy of the Terrestrial Planets -- 2.1 Introduction -- 2.2 Observational Methods -- 2.3 Interior Structure and Composition -- 2.4 Earth as a Type Example of a Terrestrial Planet -- 2.5 The Moon -- 2.6 Mercury -- 2.7 Mars -- 2.8 Venus -- 2.9 Summary and Outlook -- Acknowledgments -- References -- Chapter 3 Planetary Seismology -- 3.1 Introduction -- 3.2 Lunar Results -- 3.3 Seismic Activity of the Moon and Terrestrial Planets -- 3.4 Atmospheric Seismology -- 3.5 The Challenge: Mars Seismology -- 3.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 4 The Rotation of the Terrestrial Planets -- 4.1 Introduction -- 4.2 Theoretical Foundations -- 4.3 Mars -- 4.4 Venus -- 4.5 Mercury -- 4.6 Summary -- References -- Chapter 5 Gravity and Topography of the Terrestrial Planets -- 5.1 Introduction -- 5.2 Mathematical Preliminaries -- 5.3 The Data -- 5.4 Methods for Calculating Gravity from Topography -- 5.5 Crustal Thickness Modeling -- 5.6 Admittance Modeling -- 5.7 Localized Spectral Analysis -- 5.8 Summary of Major Results -- 5.9 Future Developments and Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Exogenic Dynamics, Cratering and Surface Ages -- 6.1 Introduction -- 6.2 Impact Craters - Morphology -- 6.3 Basics of Impact Cratering Processes. , 6.4 Size-Frequency Distribution of Impact Craters -- 6.5 Impact Rate Estimates -- 6.6 Extraterrestrial Surface Dating -- 6.7 Conclusions -- References -- Relevant Websites -- Chapter 7 Planetary Magnetism -- 7.1 Introduction -- 7.2 Tools -- 7.3 Terrestrial Planets -- 7.4 Gas Giants -- 7.5 Discussion -- 7.6 Ice Giants -- 7.7 Satellites and Small Bodies -- 7.8 Discussion -- 7.9 Summary -- References -- Relevant Website -- Chapter 8 Planetary Dynamos -- 8.1 Historical Introduction -- 8.2 General Remarks on the Dynamo Theory of Planetary Magnetism -- 8.3 Mathematical Formulation of the Problem of Spherical Dynamos -- 8.4 Convection in Rotating Spherical Shells -- 8.5 Convection-Driven Dynamos -- 8.6 Applications to Planetary Dynamos -- 8.7 Concluding Remarks -- References -- Chapter 9 Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io -- 9.1 Introduction -- 9.2 Physical and Chemical Properties of Planets and Planetary Materials Bearing on Mantle Dynamics and Thermal Evolution Models -- 9.3 Planform of Convection -- 9.4 Thermal Evolution Models Using Parametrized Convection -- 9.5 Thermal Evolution, Volcanic History, and Magnetic Field History of Terrestrial Planets -- 9.6 Comparison of the Terrestrial Planets and the Moon -- 9.7 Io -- 9.8 Summary -- References -- Chapter 10 Solid Planet-Atmosphere Interactions -- 10.1 Atmosphere-Surface Interplay on Solar System Bodies -- 10.2 Observational Constraints on Venus and Mars -- 10.3 Chemistry of Atmosphere- Surface Reactions on Mars and Venus -- 10.4 Wind-Related Processes -- 10.5 Atmosphere-Surface Interactions throughout History -- 10.6 Summary and Unsolved Questions -- References -- Chapter 11 Water on the Terrestrial Planets -- 11.1 Introduction -- 11.2 Observational Evidence -- 11.3 Water on the Surface -- 11.4 Water in Mantle and Crust -- 11.5 Evolution of Water and Climate. , 11.6 Summary and Outlook -- References -- Chapter 12 Geology, Life and Habitability -- 12.1 Introduction -- 12.2 Geology, Life and Habitability -- 12.3 Geology and Life -- 12.4 Conclusions for Geology, Life and Habitability beyond the Earth -- References -- Chapter 13 Giant Planets -- 13.1 Introduction -- 13.2 Observations and Global Properties -- 13.3 The Calculation of Interior and Evolution Models -- 13.4 Interior Structures and Evolutions -- 13.5 Implications for Planetary Formation Models -- 13.6 Future Prospects -- References -- Chapter 14 The Origin of the Natural Satellites -- 14.1 Introduction -- 14.2 The Earth-Moon System -- 14.3 Mars System -- 14.4 Jupiter System -- 14.5 Saturn System -- 14.6 Uranus System -- 14.7 Neptune System -- 14.8 Pluto System -- 14.9 Irregular Satellites -- Acknowledgments -- Appendix 1: Accretion Disks -- Appendix 2: Tides -- References -- Relevant Websites -- Chapter 15 Interiors and Evolution of Icy Satellites -- 15.1 Introduction -- 15.2 Spectroscopic Constraints on Composition -- 15.3 Elemental Abundance from Density -- 15.4 Size, Shape, and Mass -- 15.5 Modeling the Interior Structure -- 15.6 Evolution of Satellite Interiors -- 15.7 Interior Structure of Selected Icy Satellites -- 15.8 Future Prospects for Determining Satellite Internal Structure -- References -- Chapter 16 Pluto, Charon, and the Kuiper Belt Objects -- 16.1 Overviews -- 16.2 Environment -- 16.3 Physical Properties -- 16.4 Origin -- 16.5 Future Observational Goals and Prospects -- References -- Relevant Websites -- Chapter 17 Mission Analysis Issues for Planetary Exploration Missions -- 17.1 Introduction -- 17.2 Scientific Rationale and Present Status of Planetary Exploration Missions -- 17.3 Energy Requirements and Mass Budgets for Planetary Missions -- 17.4 Remote-Sensing and In Situ Missions to Venus and Mars. , 17.5 Orbit Evolution around Planetary Bodies -- 17.6 In Situ Missions to Atmosphereless Bodies -- 17.7 Gravity-Assist Missions: Giant Planets, Mercury, Asteroid, and Comet Rendezvous -- 17.8 Advanced Propulsion Systems: Solar Sail, Ion Propulsion -- 17.9 The Specific Challenges of Sample Return Missions -- References -- Chapter 18 Instrumentation for Planetary Exploration Missions -- 18.1 Introduction -- 18.2 Building on Past Missions -- 18.3 Exploration Strategies and Associated Techniques -- 18.4 Instruments -- 18.5 Instrument Suites for Exploration -- 18.6 Outlook and Timeline -- References -- Relevant Websites.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (44 S., 2,90 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 50TK0009 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (17 S., 242 KB) , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 50QM0403 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Description / Table of Contents: Rosetta, Rosetta Lander, Kometenkern, Kometenphysik, Energiehaushalt
    Type of Medium: Online Resource
    Pages: 21 p. = 1280 kB, text and images
    Edition: [Electronic ed.]
    Language: German
    Note: nIndex. - Contract no. BMBF 50 OH 9503 , Differences between the printed and electronic version of the document are possible
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Forschungsbericht
    Description / Table of Contents: Mars, volanism, interior structure, mantle dynamics, dichotomy boundary
    Type of Medium: Online Resource
    Pages: 8 p. = 40 kB, text
    Edition: [Electronic ed.]
    Language: German , English
    Note: Contract no. BMBF 50 QM 9403 , Differences between the printed and electronic version of the document are possible
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (6 S., 743 KB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 50 QM 0203 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorh , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (9 S., 870 KB) , Ill.
    Language: German
    Note: Förderkennzeichen BMBF 50QP9709 , Unterschiede zwischen dem gedruckten Dokument und der elektronische Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorh , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Solar system -- Encyclopedias. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1335 pages)
    Edition: 3rd ed.
    ISBN: 9780124160347
    DDC: 523.203
    Language: English
    Note: Front Cover -- Encyclopedia of the Solar System -- Copyright -- Contents -- Foreword* -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- About the Editors -- Contributors -- Part I - The Solar System -- Chapter 1 - The Solar System and Its Place in the Galaxy -- 1 INTRODUCTION -- 2 THE DEFINITION OF A PLANET -- 3 THE ARCHITECTURE OF THE SOLAR SYSTEM -- 4 THE ORIGIN OF THE SOLAR SYSTEM -- 5 THE SOLAR SYSTEM'S PLACE IN THE GALAXY -- 6 THE FATE OF THE SOLAR SYSTEM -- 7 CONCLUDING REMARKS -- BIBLIOGRAPHY -- Chapter 2 - The Origin of the Solar System -- 1 INTRODUCTION -- 2 STAR FORMATION AND PROTOPLANETARY DISKS -- 3 METEORITES AND THE ORIGIN OF THE SOLAR SYSTEM -- 4 NUCLEOSYNTHESIS AND SHORT-LIVED ISOTOPES -- 5 EARLY STAGES OF PLANETARY GROWTH -- 6 FORMATION OF TERRESTRIAL PLANETS -- 7 THE ASTEROID BELT -- 8 GROWTH OF GAS AND ICE GIANT PLANETS -- 9 PLANETARY SATELLITES -- 10 EXTRASOLAR PLANETS -- 11 SUMMARY AND FUTURE PROSPECTS -- BIBLIOGRAPHY -- Chapter 3 - Solar System Dynamics: Regular and Chaotic Motion -- 1 INTRODUCTION: KEPLERIAN MOTION -- 2 THE TWO-BODY PROBLEM -- 3 PLANETARY PERTURBATIONS AND THE ORBITS OF SMALL BODIES -- 4 CHAOTIC MOTION -- 5 ORBITAL EVOLUTION OF MINOR BODIES -- 6 LONG-TERM STABILITY OF PLANETARY ORBITS -- 7 DISSIPATIVE FORCES AND THE ORBITS OF SMALL BODIES -- 8 CHAOTIC ROTATION -- 9 EPILOG -- BIBLIOGRAPHY -- Part II - Fundamental Planetary Processes and Properties -- Chapter 4 - Planetary Impacts -- 1 IMPACT CRATERS -- 2 IMPACT PROCESSES -- 3 IMPACTS AND PLANETARY EVOLUTION -- 4 IMPACTS AS PLANETARY PROBES -- BIBLIOGRAPHY -- Chapter 5 - Planetary Volcanism -- 1 SUMMARY OF PLANETARY VOLCANIC FEATURES -- 2 CLASSIFICATION OF ERUPTIVE PROCESSES -- 3 EFFUSIVE ERUPTIONS AND LAVA FLOWS -- 4 EXPLOSIVE ERUPTIONS -- 5 INFERENCES ABOUT PLANETARY INTERIORS -- BIBLIOGRAPHY. , Chapter 6 - Magnetic Field Generation in Planets -- 1 PLANETARY MAGNETIC FIELD OBSERVATIONS -- 2 THE DYNAMO MECHANISM -- 3 THE STANDARD PLANETARY DYNAMO -- 4 SIMULATIONS AND EXPERIMENTS -- 5 PLANETARY DYNAMOS -- 6 CONCLUSIONS AND FUTURE PROSPECTS -- BIBLIOGRAPHY -- Chapter 7 - Planetary Magnetospheres -- 1 WHAT IS A MAGNETOSPHERE? -- 2 TYPES OF MAGNETOSPHERES -- 3 PLANETARY MAGNETIC FIELDS -- 4 MAGNETOSPHERIC PLASMAS -- 5 DYNAMICS -- 6 INTERACTIONS WITH MOONS -- 7 CONCLUSIONS -- BIBLIOGRAPHY -- Chapter 8 - Rotation of Planets -- INTRODUCTION -- 1 OBSERVED ROTATION STATE OF PLANETS -- 2 ORIGIN AND LONG-TERM SPIN EVOLUTION -- 3 LONG-TERM EVOLUTION OF THE ORIENTATION -- 4 ROTATIONAL FLATTENING OF PLANETS -- 5 PRECESSION -- 6 NUTATION -- 7 LOD VARIATIONS -- 8 LIBRATION -- 9 WOBBLES AND THE INTERIORS OF TERRESTRIAL PLANETS -- 10 OBSERVATION OF THE ROTATION OF TERRESTRIAL PLANETS -- BIBLIOGRAPHY -- Chapter 9 - Evolution of Planetary Interiors -- 1 INTRODUCTION -- 2 FORMATION AND EARLY EVOLUTION OF TERRESTRIAL BODIES -- 3 SUBSOLIDUS CONVECTION -- 4 ROCK RHEOLOGY AND MODES OF CONVECTION -- 5 MODELING INTERIOR DYNAMICS AND EVOLUTION -- 6 CONSTRAINTS ON AND MODELS OF THE EVOLUTION OF PLANETARY INTERIORS -- 7 CONCLUDING REMARKS AND PERSPECTIVES -- BIBLIOGRAPHY -- Chapter 10 - Astrobiology -- 1 INTRODUCTION -- 2 WHAT IS LIFE? -- 3 THE HISTORY OF LIFE ON EARTH -- 4 THE ORIGIN OF LIFE -- 5 LIMITS TO LIFE -- 6 LIFE IN THE SOLAR SYSTEM -- 7 HOW TO SEARCH FOR LIFE ON MARS, EUROPA, OR ENCELADUS -- 8 LIFE ABOUT OTHER STARS -- 9 CONCLUSION -- BIBLIOGRAPHY -- Part III - The Sun -- Chapter 11 - The Sun -- 1 INTRODUCTION -- 2 THE SOLAR INTERIOR -- 3 THE PHOTOSPHERE -- 4 THE CHROMOSPHERE AND TRANSITION REGION -- 5 THE CORONA -- 6 SOLAR FLARES AND CMES -- 7 FINAL COMMENTS -- BIBLIOGRAPHY -- Chapter 12 - The Solar Wind -- 1 DISCOVERY. , 2 STATISTICAL PROPERTIES IN THE ECLIPTIC PLANE AT 1AU -- 3 NATURE OF THE HELIOSPHERIC MAGNETIC FIELD -- 4 CORONAL AND SOLAR WIND STREAM STRUCTURE -- 5 THE HELIOSPHERIC CURRENT SHEET AND SOLAR LATITUDE EFFECTS -- 6 EVOLUTION OF STREAM STRUCTURE WITH HELIOCENTRIC DISTANCE -- 7 CORONAL MASS EJECTIONS AND TRANSIENT SOLAR WIND DISTURBANCES -- 8 VARIATION WITH DISTANCE FROM THE SUN -- 9 TERMINATION OF THE SOLAR WIND -- 10 KINETIC PROPERTIES OF THE PLASMA -- 11 HEAVY ION CONTENT -- 12 ENERGETIC PARTICLES -- 13 TURBULENCE AND MAGNETIC FIELD AND VELOCITY FLUCTUATIONS -- 14 CONCLUSION -- BIBLIOGRAPHY -- Part IV - Earthlike Planets -- Chapter 13 - Mercury -- 1 EXPLORATION OF MERCURY -- 2 GENERAL PLANETARY CHARACTERISTICS -- 3 MOTION AND TEMPERATURE -- 4 INTERNAL STRUCTURE AND MAGNETIC FIELD -- 5 EXOSPHERE AND MAGNETOSPHERE -- 6 GEOLOGIC FEATURES -- 7 RECENT SURFACE FEATURES -- 8 HISTORY -- BIBLIOGRAPHY -- Chapter 14 - Venus: Atmosphere -- 1 INTRODUCTION AND OBSERVATIONS -- 2 ATMOSPHERIC TEMPERATURES -- 3 COMPOSITION -- 4 CLOUDS AND HAZES -- 5 GENERAL CIRCULATION AND DYNAMICS -- 6 EVOLUTION OF THE ATMOSPHERE AND CLIMATE -- BIBLIOGRAPHY -- Chapter 15 - Venus: Surface and Interior -- 1 INTRODUCTION -- 2 HISTORY OF VENUS EXPLORATION -- 3 GENERAL CHARACTERISTICS -- 4 IMPACT CRATERS AND RESURFACING HISTORY -- 5 INTERIOR PROCESSES -- 6 COMPOSITION -- 7 VOLCANISM -- 8 TECTONICS -- 9 SUMMARY -- BIBLIOGRAPHY -- Books -- Journal Articles Special Issues -- Web Sites -- Chapter 16 - Mars Atmosphere: History and Surface Interactions -- 1 INTRODUCTION -- 2 VOLATILE INVENTORIES AND THEIR HISTORY -- 3 PRESENT AND PAST CLIMATES -- 4 CONCLUDING REMARKS -- BIBLIOGRAPHY -- Chapter 17 - Mars: Surface and Interior -- 1 MARS EXPLORATION -- 2 GENERAL CHARACTERISTICS -- 3 IMPACT CRATERING -- 4 VOLCANISM -- 5 TECTONICS -- 6 CANYONS -- 7 WATER -- 8 ICE -- 9 WIND -- 10 POLES. , 11 THE VIEW FROM THE SURFACE -- 12 SUMMARY -- BIBLIOGRAPHY -- Chapter 18 - Interior Structure and Evolution of Mars -- 1 INTRODUCTION -- 2 FORMATION AND DIFFERENTIATION OF MARS -- 3 CORE -- 4 MANTLE -- 5 CRUST -- 6 PRINCIPLES OF GLOBAL INTERIOR STRUCTURE AND EVOLUTION -- 7 GLOBAL INTERIOR STRUCTURE OF MARS -- 8 EVOLUTION OF MARS -- BIBLIOGRAPHY -- Chapter 19 - Mars: Landing Site Geology, Mineralogy, and Geochemistry -- 1 INTRODUCTION TO MARS EXPLORATIION -- 2 LANDING SITES ON MARS -- 3 MARS LANDING SITES IN REMOTELY SENSED DATA -- 4 LANDING SITE GEOLOGY -- 5 LANDING SITE MINERALOGY AND GEOCHEMISTRY -- 6 IMPLICATIONS FOR THE EVOLUTION OF MARS -- BIBLIOGRAPHY -- Part V - Earth and Moon as Planets -- Chapter 20 - Earth as a Planet: Atmosphere and Oceans -- 1 OVERVIEW OF PLANETARY CHARACTERISTICS -- 2 VERTICAL STRUCTURE OF THE ATMOSPHERE -- 3 ATMOSPHERIC CIRCULATION -- 4 OCEANS -- 5 CLIMATE -- 6 LIFE IN THE ATMOSPHERE-OCEAN SYSTEM -- 7 CONCLUSIONS -- BIBLIOGRAPHY -- Chapter 21 - Earth as a Planet: Surface and Interior -- 1 INTRODUCTION: THE EARTH AS A GUIDE TO OTHER PLANETS -- 2 PHYSIOGRAPHIC PROVINCES OF EARTH -- 3 EARTH SURFACE PROCESSES -- 4 TOOLS FOR STUDYING EARTH'S DEEP INTERIOR -- 5 SEISMIC SOURCES -- 6 EARTH'S RADIAL STRUCTURE -- 7 EARTH IN THREE DIMENSIONS -- 8 EARTH AS A ROSETTA STONE -- BIBLIOGRAPHY -- Chapter 22 - Space Weather -- 1 THE SOLAR AND HELIOSPHERIC ROLES IN SPACE WEATHER -- 2 THE GEOSPACE ROLE IN SPACE WEATHER -- 3 ATMOSPHERIC EFFECTS OF SPACE WEATHER -- 4 PRACTICAL ASPECTS OF SPACE WEATHER -- 5 IMPLICATIONS FOR PLANETARY ASTRONOMY AND ASTROPHYSICS -- 6 EPILOGUE -- BIBLIOGRAPHY -- Chapter 23 - The Moon -- 1 INTRODUCTION -- 2 THE ORBIT OF THE MOON -- 3 PHYSICAL PROPERTIES -- 4 ORIGIN OF THE MOON -- 5 THE MAGMA OCEAN -- 6 THE INTERIOR OF THE MOON -- 7 THE LUNAR CRUST AND LUNAR TERRANES -- 8 LUNAR ROCKS -- 9 SURFACE OF THE MOON. , 10 LUNAR STRATIGRAPHY AND SURFACE AGES -- 11 THE REGOLITH -- 12 THE APOLLO AND LUNA LANDING SITES -- 13 SIGNIFICANCE OF LANDING SITES FOR THE INTERPRETATION OF GLOBAL DATA SETS -- 14 LUNAR VOLATILES -- 15 LUNAR ATMOSPHERE AND ENVIRONMENT -- ACKNOWLEDGEMENT -- BIBLIOGRAPHY -- Chapter 24 - Interior of the Moon -- 1 INTRODUCTION -- 2 BULK LUNAR PROPERTIES -- 3 METHODS USED TO PROBE THE LUNAR INTERIOR -- 4 LUNAR INTERNAL STRUCTURE -- 5 IMPLICATIONS FOR LUNAR FORMATION AND EVOLUTION -- BIBLIOGRAPHY -- Chapter 25 - Lunar Exploration -- 1 INTRODUCTION -- 2 TELESCOPIC EXPLORATION OF THE MOON -- 3 THE EARLY SPACE AGE -- 4 THE APOLLO PROGRAM -- 5 POST-APOLLO EXPLORATION -- 6 LETTING THE MOON COME TO US: THE IMPORTANCE OF LUNAR METEORITES FOR LUNAR EXPLORATION -- 7 FUTURE LUNAR EXPLORATION OBJECTIVES -- 8 CONCLUSION -- ACKNOWLEDGMENTS -- BIBLIOGRAPHY -- Websites -- Part VI - Asteroids, Dust and Comets -- Chapter 26 - Main-Belt Asteroids -- 1 INTRODUCTION TO ASTEROIDS -- 2 LOCATIONS AND ORBITS -- 3 PHYSICAL CHARACTERISTICS AND COMPOSITION -- 4 PUZZLES AND PROMISE -- BIBLIOGRAPHY -- Chapter 27 - Near-Earth Objects -- 1 INTRODUCTION -- 2 SIGNIFICANCE -- 3 ORIGINS -- 4 POPULATION -- 5 PHYSICAL PROPERTIES -- 6 IN SITU STUDIES -- 7 IMPACT HAZARDS -- APPENDIX -- BIBLIOGRAPHY -- Chapter 28 - Meteorites -- 1 INTRODUCTION -- 2 METEORITE CLASSIFICATION -- 3 METEORITES OF ASTEROIDAL ORIGIN -- 4 METEORITES FROM LARGER BODIES -- 5 CHEMICAL AND ISOTOPIC SIGNATURES -- 6 COMPONENTS OF CHONDRITES -- 7 METEORITE CHRONOMETRY -- 8 EPILOGUE -- BIBLIOGRAPHY -- Chapter 29 - Dust in the Solar System -- 1 INTRODUCTION -- 2 MANIFESTATIONS OF COSMIC DUST -- 3 DYNAMICS AND EVOLUTION -- 4 FUTURE STUDIES -- BIBLIOGRAPHY -- Chapter 30 - Physics and Chemistry of Comets -- 1 SPACE MISSIONS TO COMETS -- 2 A BRIEF HISTORY OF COMET STUDIES -- 3 PHYSICS OF THE NUCLEUS -- 4 COMA AND HYDROGEN CLOUD. , 5 TAILS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-25
    Description: The Earth-like planets and moons in our solar system have iron-rich cores, silicate mantles, and a basaltic crust. Differentiated icy moons can have a core and a mantle and an outer water–ice layer. Indirect evidence for several icy moons suggests that this ice is underlain by or includes a water-rich ocean. Similar processes are at work in the interiors of these planets and moons, including heat transport by conduction and convection, melting and volcanism, and magnetic field generation. There are significant differences in detail, though, in both bulk chemical compositions and relative volume of metal, rock and ice reservoirs. For example, the Moon has a small core [~ 0.2 planetary radii (RP)], whereas Mercury’s is large (~ 0.8 RP). Planetary heat engines can operate in somewhat different ways affecting the evolution of the planetary bodies. Mercury and Ganymede have a present-day magnetic field while the core dynamo ceased to operate billions of years ago in the Moon and Mars. Planets and moons differ in tectonic style, from plate-tectonics on Earth to bodies having a stagnant outer lid and possibly solid-state convection underneath, with implications for their magmatic and atmosphere evolution. Knowledge about their deep interiors has improved considerably thanks to a multitude of planetary space missions but, in comparison with Earth, the data base is still limited. We describe methods (including experimental approaches and numerical modeling) and data (e.g., gravity field, rotational state, seismic signals, magnetic field, heat flux, and chemical compositions) used from missions and ground-based observations to explore the deep interiors, their dynamics and evolution and describe as examples Mercury, Venus, Moon, Mars, Ganymede and Enceladus.
    Description: Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) (4202)
    Keywords: ddc:523 ; Interior structure ; Terrestrial planets and moons ; Space exploration ; Gravity ; Rotation ; Magnetic fields ; Thermal evolution
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 107 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: bThe Earth is found to equilibrate thermally after a giant impact melts a significant portion of the planet on a time-scale of a few million years. A simple thermal evolution model for the cooling of a terrestrial planet, a prescribed fraction of which is melted during a giant impact, is presented. Two model geometries are considered. The first has a laterally inhomogeneous distribution of melt and solid through a mega-crater geometry and the second has a global magma ocean. The model assumes convective heat transfer in the melt and, in the case of the mega-crater geometry, convection in the solid part of the planet. In the magma-ocean case the solid interior is not convecting. The melt region may cool due to heat transfer to the planet's surface and to the solid region and due to melting of solid. The solid region cools by heat transfer to the planet's surface in the mega-crater model. The viscosities of the melt and the solid are assumed to be dependent on the exponential of the inverse absolute temperature. Convective heat transfer is parametrized by using semi-empirical boundary layer thickness scaling laws. Most model parameters including planetary size are absorbed into a cooling time-scale. Of the remaining parameters of the scaled model, the rate of change of melt viscosity with temperature, the surface temperature and, for small melt fractions, the melt region geometry are most important in determining the cooling time. The initial melt temperature, the heat capacities of the solid and the melt, and the Stefan number, a measure of the latent heat of melting, determine the proportion of the solid that is melted during cooling of the impact melt. It is found that almost the whole planet may melt if the impact originally melted half of the planet and if the initial melt temperature was twice a representative planet melting temperature. For reasonable choices of parameter values it is found that thermal equilibration of the Earth occurs on a time-scale of 1 to 10 million years.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...