GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-16
    Description: The anthropogenic trace gases chlorofluorocarbon (CFC)-12 and sulfur hexafluoride (SF6) were measured during 2013 in the eastern tropical South Pacific Ocean (ETSP) offshore Chile and Peru (12°-22°S, 70°-86°W). Since the WOCE P21 line along ~17°S in 1993, the CFC-12 penetration depth increased from ~550 m to ~800 m. In 2013, CFC-12 had penetrated through the bottom of the oxygen deficient zone (ODZ, where oxygen (O2) 〈 4.5 μmol kg−1) at all stations, indicating that a portion of waters in this ODZ are ventilated on timescales 〈 60 years. Isopycnal trends in pSF6 and pCFC-12 ages versus AOU indicated oxygen utilization rates of 11.2 ± 4.7 μmol kg−1 yr−1 just above the ODZ (90–130 m) and 1.0 ± 0.5 μmol kg−1 yr−1 beneath the ODZ (400–700 m). Isopycnal trends in pSF6 ages and nutrients implied fixed N-loss rates of 0.6 ± 0.4 μmol kg−1 yr−1 at the top of the ODZ (~120 m). The pSF6 and pCFC-12 ages were significantly younger than mean ages estimated from one-dimensional transit time distributions, which were difficult to constrain using the SF6 and CFC-12 tracer combination. Despite the fact that tracer concentrations tend to underestimate mean ages, and thus overestimate nutrient regeneration/consumption rates, N-loss rates were undetectable (〈0.5 μmol kg−1 yr−1) within the ODZ itself (~175–400 m). When integrated over depth, the oxygen and nitrogen consumption rates determined above and below the ODZ implied total organic carbon (C) remineralization rates on the order of 0.6 ± 0.1 mol C m−2 yr−1. These low C-export rates, and the decadal ventilation timescale of this ODZ, support a body of work suggesting that the ODZ may be sustained by inputs of high-tracer, low-oxygen waters from the adjacent Peru-Chile coastal upwelling system rather than by organic matter oxidation occurring locally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (〉75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (1). pp. 1005-1024.
    Publication Date: 2018-03-16
    Description: Temporal trends in oceanic dissolved inorganic carbon (DIC) and δ13C-DIC were reconstructed along five isopycnals in the upper 1000 m of the North Atlantic Ocean using a back-calculation approach. The mean anthropogenic DIC increase was 1.21 ± 0.07 μmol kg−1 yr−1 and the mean 13C decrease was −0.026 ± 0.002‰ yr−1, both in good agreement with the results from previous studies. The observed δ13C-DIC perturbation ratio is −0.024 ± 0.003‰ (μmol kg−1)−1. Our results indicate that the North Atlantic is able to maintain equilibrium with the anthropogenic perturbation for DIC and follows it with decadal time lag for δ13C. A CFC-calibrated one-dimensional isopycnal advection-diffusion model is used to evaluate temporal DIC and δ13C trends and perturbation ratios of the reconstructions. We investigate the time history of the air-sea CO2 and 13C disequilibria in the North Atlantic and discuss the importance of physical and biological processes in maintaining them. We find evidence that the North Atlantic Ocean is characterized by enhanced uptake of anthropogenic CO2. Also, we use the model to examine how the time rate of change of δ13C depends on changes in the temporal evolution of δ13C in the atmosphere. The model evolution explains the curious result that the time rate of change of surface water δ13C in the North Atlantic Ocean can exceed that observed concurrently in the atmosphere. Finally we introduce a powerful way of estimating the global air-sea pCO2 disequilibrium based on the oceanic δ13C-DIC perturbation ratio.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C07014, doi:10.1029/2003JC001988.
    Description: A diagnostic, isopycnal advection-diffusion model based on a climatological, geostrophic flow field is used to study the uptake of chlorofluorocarbons (CFCs) into the portion of the thermocline that outcrops in the open North Pacific (σ θ ≤ 26.6 kg m−3). In addition to advection, isopycnal diffusion is required to match the CFC data collected during the World Ocean Circulation Experiment (WOCE) in the early 1990s. Using reduced outcrop saturations of 80–95% for isopycnals outcropping in the northwestern North Pacific (σ θ ≥ 25.4 kg m−3), together with an isopcynal interior diffusivity of 2000 m2 s−1 and enhanced diffusion (5000 m2 s−1) in the Kuroshio Extension region, further improves the model-data agreement. Along-isopycnal diffusion is particularly important for isopycnals with shadow zones/pool regions in the western subtropical North Pacific that are isolated from direct advective ventilation. The isopycnal mixing causes an estimated increase in CFC-12 inventories on these isopycnals, compared to advection only, ranging from 10–20% (σ θ = 25.6 kg m−3) to 50–130% (σ θ = 26.6 kg m−3) over the subtropics in 1993. This contribution has important consequences for subduction rate estimates derived from CFC inventories and for the location of the subsurface CFC maxima. When tracer ages are derived from the modeled CFC distributions, time-evolving mixing biases become apparent that reflect the nonlinearities in the atmospheric CFC time histories. Comparison with model-calculated ideal ages suggests that during the time of WOCE (∼1993), ventilation ages based on CFC-12 were biased young by as much as 16–24 years for pCFC-12 ages of 25 years, underestimating ideal ages by as much as 40–50%.
    Description: Most of this work was performed while S.M. was a graduate student at the University of Washington under the support of NSF grant OCE-9819192. A postdoctoral scholarship for S.M. at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation, helped complete this work. R.E.S. acknowledges support from NSF grant OCE-0136897.
    Keywords: Tracers ; Mixing ; Thermocline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E., Pardo, P. C., Sabine, C. L., Johnson, G. C., Sloyan, B. M., Murata, A., Mecking, S., Tilbrook, B., Speer, K., Talley, L. D., Millero, F. J., Wijffels, S. E., Macdonald, A. M., Gruber, N., & Bullister, J. L. Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochemical Cycles, 33(5), (2019):597-617, doi:10.1029/2018GB006154.
    Description: We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between 1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few decades, with most sections having been recently measured as part of the Global Ocean Ship‐based Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that combines the extended multiple linear regression method with improvements to address the challenges of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of hydrographic data and that a continuation of repeated surveys is a critical component of future carbon cycle monitoring.
    Description: The data we use can be accessed at CCHDO website (https://cchdo.ucsd.edu/) and GLODAP website (https://www.glodap.info/). This research would not be possible without the hard work of the scientists and crew aboard the many repeated hydrographic cruises coordinated by GO‐SHIP, which is funded by NSF OCE and NOAA OAR. We thank funding agencies and program managers as follows: U.S., Australian, Japanese national science funding agencies that support data collection, data QA/QC, and data centers. Contributions from B. R. C., R. A. F., and R. W. are supported by the National Oceanic and Atmospheric Administration Global Ocean Monitoring and Observing Program (Data Management and Synthesis Grant: N8R3CEA‐PDM managed by Kathy Tedesco and David Legler). G. C. J. is supported by the Climate Observation Division, Climate Program Office, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research (fund reference 100007298), grant (N8R1SE3‐PGC). B. M. S was supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. N. G. acknowledges support by ETH Zurich. This is JISAO contribution 2018‐0149 and PMEL contribution 4786. We fondly remember John Bullister as a treasured friend, valued colleague, and dedicated mentor, and we thank him for sharing his days with us. He is and will be dearly missed.
    Keywords: Anthropogenic carbon ; Pacific ; Decadal variability ; EMLR ; Ocean acidification ; Repeat hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...