GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Zoologica Scripta 16 (1987), S. 125-142 
    ISSN: 0300-3256
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Zoologica Scripta 18 (1989), S. 223-229 
    ISSN: 0300-3256
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Estuarine, Coastal and Shelf Science 39 (1994), S. 367-388 
    ISSN: 0272-7714
    Keywords: Netherlands coast ; Westerschelde ; community composition ; estuarine organisms ; meiobenthos ; spatial distribution
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geography , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 164 (1988), S. 33-38 
    ISSN: 1573-5117
    Keywords: marine ; nematode ; Spirobolbolaimus ; Microlaimidae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spirobolbolaimus bathyalis gen. nov., sp. nov. is described from the continental slope off Calvi (Mediterranean). The new genus Spirobolbolaimus belongs to the Microlaimidae Micoletzky, 1922 and is closely related to the genus Bolbolaimus Cobb, 1920. It can be differentiated from Bolbolaimus by its multispiral amphideal fovea and by its six rows of postamphideal setae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-19
    Description: Total biomass and biomass of large taxonomic groups (polychaetes, molluscs, crustaceans, echinoderms) and species diversity of the macrofauna were determined for almost 200 North Sea stations sampled synoptically by seven vessels during Spring 1986 and for 120 additional stations sampled in earlier years by the Marine Laboratory in Aberdeen. There exists a clear and significant decreasing trend in biomass with latitude, both in total biomass and for the different taxonomic groups. Apart from latitude, sediment composition and chlorophyll a content of the sediment also infuence total biomass and biomass of most groups significantly. Biomass increases consistently in finer sediments and sediments with a higher chlorophyll a content. The same trends are found for the results within laboratories. Some interaction exists, indicating weak laboratory and zonal effects. Diversity, as measured by Hill's diversity index N1 = (exp H′) shows a clear and significant trend with latitude. Towards the north of the North Sea diversity increases considerably. The trend is also found for laboratories separately and is everywhere equally strong. Also longitude and depth show an effect on diversity. Sediment variables have no clear influence on diversity. Other diversity measures show the same trend but are more variable than N1,. Total density tends to increase towards the north, but sediment related variables have a larger influence. Mean individual weight becomes considerably smaller towards the northern part of the North Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 (12). pp. 5341-5352.
    Publication Date: 2013-01-24
    Description: A 2-Dimensional mathematical reaction-transport model was developed to study the impact of the mud-dwelling frenulate tubeworm Siboglinum sp. on the biogeochemistry of a sediment (MUC15) at the Captain Arutyunov mud volcano (CAMV). By explicitly describing the worm in its surrounding sediment, we are able to make budgets of processes occurring in- or outside of the worm, and to quantify how different worm densities and biomasses affect the anaerobic oxidation of methane (AOM) and sulfide reoxidation (HSox). The model shows that, at the observed densities, the presence of a thin worm body is sufficient to keep the upper 10 cm of sediment well homogenised with respect to dissolved substances, in agreement with observations. By this "bio-ventilation" activity, the worm pushes the sulfate-methane transition (SMT) zone downward to the posterior end of its body, and simultaneously physically separates the sulfide produced during the anaerobic oxidation of methane from oxygen. While there is little scope for AOM to take place in the tubeworm's body, 70% of the sulfide that is produced by sulfate reduction processes or that is advected in the sediment is preferentially shunted via the organism where it is oxidised by endosymbionts providing the energy for the worm's growth. The process of sulfide reoxidation, occurring predominantly in the worm's body is thus very distinct from the anaerobic oxidation of methane, which is a diffuse process that takes place in the sediments in the methane-sulfate transition zone. We show how the sulfide oxidation process is affected by increasing densities and length of the frenulates, and by upward advection velocity. Our biogeochemical model is one of the first to describe tubeworms explicitly. It can be used to directly link biological and biogeochemical observations at seep sites, and to study the impacts of mud-dwelling frenulates on the sediment biogeochemistry under varying environmental conditions. Also, it provides a tool to explore the competition between bacteria and fauna for available energy resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-24
    Description: The effect of CO2 on carbon fluxes in Arctic plankton communities was investigated during the 2010 EPOCA mesocosm study in Ny Ålesund, Svalbard. Nine mesocosms were set up with initial pCO2 levels ranging from 185 to 1420 μatm for 5 weeks. 13C labelled bicarbonate was added at the start of the experiment to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton, bacteria, total particulate organic carbon (POC), zooplankton, and settling particles. Polar lipid derived fatty acids (PLFA) were used to trace carbon dynamics of phytoplankton and bacteria and allowed distinction of two groups of phytoplankton: phyto I (autotrophs) and phyto II (mixotrophs). Nutrients were added on day 13. A nutrient-phytoplankton-zooplankton-detritus model amended with 13C dynamics was constructed and fitted to the data to quantify uptake rates and carbon fluxes in the plankton community during the phase prior to nutrient addition (phase 1, days 0–12). During the first 12 days, a phytoplankton bloom developed that was characterized by high growth rates (0.87 days−1) for phyto I and lower growth rates (0.18 days−1) for phyto II. A large part of the carbon fixed by phytoplankton (~31%) was transferred to bacteria, while mesozooplankton grazed only ~6% of the production. After 6 days, the bloom collapsed and part of the organic matter subsequently settled into the sediment traps. The sedimentation losses of detritus in phase 1 were low (0.008 days−1) and overall export was only ~7% of production. Zooplankton grazing and detritus sinking losses prior to nutrient addition were sensitive to CO2: grazing decreased with increasing CO2, while sinking increased. Phytoplankton production increased again after nutrient addition on day 13. Although phyto II showed initially higher growth rates with increasing CO2 (days 14–22), the overall production of POC after nutrient addition (phase 2, days 14–29) decreased with increasing CO2. Significant sedimentation occurred towards the end of the experiment (after day 24) and much more material settled down in the sediment traps at low CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: The benthic diagenetic model OMEXDIA has been used to reproduce observed benthic pore water and solid phase profiles obtained during the OMEX study in the Goban Spur Area (N.E. Atlantic), and to dynamically model benthic profiles at site OMEX III (3660-m depth), with the sediment trap organic flux as external forcing. The results of the dynamic modelling show that the organic flux as determined from the lowermost sediment trap (400 metres above the bottom) at OMEX III is insufficient to explain the organic carbon and pore water profiles. The best fitting was obtained by maintaining the seasonal pattern as observed in the traps, while multiplying the absolute values of the flux by a factor of 1.85. The “inverse modelling” of diagenetic processes resulted in estimates of total mineralisation rate and of degradability of the organic matter at the different stations. These diagenetic model-based estimates are used to constrain the patterns of lateral and vertical transports of organic matter. Using the observed degradability as a function of depth, we show that the observed organic matter fluxes at the different depths are consistent with a model where at all stations along the gradient the same vertical export flux occurs at 200 m, and where organic matter sinks with a constant sinking rate of around 130 m d−1. If sinking rates were higher, in the order of 200 m d−1, the observations could be consistent with an off-slope gradient in export production of approximately a factor of 1.5 between the shallowest and deepest sites. The derived high degradability of the arriving organic matter and the consistency of the mass fluxes at the different stations exclude the possibility of a massive deposition, on the margin, of organic matter produced on the shelf or shelf break. However, other hypotheses to explain the patterns found in the sediment trap data of both OMEX and other continental margin study sites also suffer from different inconsistencies. Further, close examination of the flow patterns at the margin will be needed to examine the question.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-13
    Description: A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced in mesocosms over a period of 23 days. The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growth model in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without any modulation term). In a first step, the model has been applied to the simulations of present pCO2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO43−). Uptake of carbon and nitrogen being uncoupled, the cellular C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm. Research highlights ► Unbalanced growth model in carbon and nitrogen applied to E.Huxleyi dynamics. ► Gathering of formulations describing typical processes involved in export of carbon. ► Original representation of calcification as a function of primary production. ► Explicit representation of enhanced mortality linked to viral lysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: The potential impact of rising carbon dioxide (CO2) on carbon transfer from phytoplankton to bacteria was investigated during the 2005 PeECE III mesocosm study in Bergen, Norway. Sets of mesocosms, in which a phytoplankton bloom was induced by nutrient addition, were incubated under 1× (~350 μatm), 2× (~700 μatm), and 3× present day CO2 (~1050 μatm) initial seawater and sustained atmospheric CO2 levels for 3 weeks. 13C labelled bicarbonate was added to all mesocosms to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton and subsequently heterotrophic bacteria, and settling particles. Isotope ratios of polar-lipid-derived fatty acids (PLFA) were used to infer the biomass and production of phytoplankton and bacteria. Phytoplankton PLFA were enriched within one day after label addition, whilst it took another 3 days before bacteria showed substantial enrichment. Group-specific primary production measurements revealed that coccolithophores showed higher primary production than green algae and diatoms. Elevated CO2 had a significant positive effect on post-bloom biomass of green algae, diatoms, and bacteria. A simple model based on measured isotope ratios of phytoplankton and bacteria revealed that CO2 had no significant effect on the carbon transfer efficiency from phytoplankton to bacteria during the bloom. There was no indication of CO2 effects on enhanced settling based on isotope mixing models during the phytoplankton bloom, but this could not be determined in the post-bloom phase. Our results suggest that CO2 effects are most pronounced in the post-bloom phase, under nutrient limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...