GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3EOS Transactions, American Geophysical Union, 94(45), pp. 409-420, ISSN: 2324-9250
    Publication Date: 2014-04-14
    Description: Generic Mapping Tools (GMT) is an open-source software package for the analysis and display of geoscience data, helping scientists to analyze, interpolate, filter, manipulate, project, and plot time series and gridded data sets. The GMT toolbox includes about 80 core and 40 supplemental program modules sharing a common set of command options, file structures, and documentation. Its power to process data and produce publication-quality graphic presentations has made it vital to a large scientific community that now includes more than 25,000 individual users. GMT's website (http://gmt.soest.hawaii.edu/) exceeds 20,000 visits per month, and server logs show roughly 2000 monthly downloads.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comptes Rendus Geosciences 338 (2006): 1049-1062, doi:10.1016/j.crte.2006.05.014.
    Description: Bathymetry is foundational data, providing basic infrastructure for scientific, economic, educational, managerial, and political work. Applications as diverse as tsunami hazard assessment, communications cable and pipeline route planning, resource exploration, habitat management, and territorial claims under the Law of the Sea all require reliable bathymetric maps to be available on demand. Fundamental Earth science questions, such as what controls seafloor shape and how seafloor shape influences global climate, also cannot be answered without bathymetric maps having globally uniform detail. Current bathymetric charts are inadequate for many of these applications because only a small fraction of the seafloor has been surveyed. Modern multibeam echosounders provide the best resolution, but it would take more than 200 ship-years and billions of dollars to complete the job. The seafloor topography can be charted globally, in five years, and at a cost under $100M. A radar altimeter mounted on an orbiting spacecraft can measure slight variations in ocean surface height, which reflect variations in the pull of gravity caused by seafloor topography. A new satellite altimeter mission, optimized to map the deep ocean bathymetry and gravity field, will provide a global map of the world's deep oceans at a resolution of 6-9 km. This resolution threshold is critical for a large number of basic science and practical applications, including: • Determining the effects of bathymetry and seafloor roughness on ocean circulation, mixing, climate, and biological communities, habitats, and mobility. • Understanding the geologic processes responsible for ocean floor features unexplained by simple plate tectonics, such as abyssal hills, seamounts, microplates, and propagating rifts. • Improving tsunami hazard forecast accuracy by mapping the deep ocean topography that steers tsunami wave energy. • Mapping the marine gravity field to improve inertial navigation and provide homogeneous coverage of continental margins. • Providing bathymetric maps for numerous other practical applications, including reconnaissance for submarine cable and pipeline routes, improving tide models, and assessing potential territorial claims to the seabed under the United Nations Convention on the Law of the Sea.
    Description: This material is based upon work supported by the National Science Foundation under Grant No. 0326707
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1037664 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oceanography Society
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, no. 2 (2010): 112-114.
    Description: Despite playing a significant role in the global water cycle, ocean volume has not been re-examined in over 25 years. The main uncertainty associated with ocean volume is the mean ocean depth. The earliest studies tended to overestimate ocean depth due to undersampling of seamounts and ocean ridges. The advent of the echosounder in the 1920s and subsequent ship-borne technologies rapidly increased aerial coverage of the ocean; hence, over time there has been a gradual decrease in calculated mean ocean depth. Today, however, in situ measurements span only ~ 10% of the ocean’s surface area. Here, we use satellite altimetry data to estimate the ocean’s volume, which is lower by a volume equivalent to 500 times the Great Lakes or five times the Gulf of Mexico when compared to the most recent published estimates.
    Description: This work was funded in part by the EarthWater Institute (http://www. earthwaterinstitute.org) in concert with the institute’s ongoing Global Water Audit.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 26 (1998), S. 697-747 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: Abstract Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km-scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10-80 km) roughness of old ocean floor is spreading-rate dependent in the same way that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 359 (1992), S. 524-527 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We start from a feeling that previous explanations for the flattening of the sea-floor depth-age curve are not entirely satisfactory. Hotspot rejuvenation models3'4 predict heat flow and seismic slowness anomalies, yet no such anomalies are observed7'9. The classic 'plate' model1 assumption of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...