GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Germanium. ; Semiconductors--Defects. ; Electrical engineering. ; Electronic books.
    Description / Table of Contents: The first part of this overview on extended defects in Germanium covers fundamentals, describing crystallographic structure and other physical and electrical properties. The second part treats the extended defects during wafer and device processing.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9783540856146
    Series Statement: Springer Series in Materials Science Series ; v.118
    DDC: 620.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Germanium - Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (476 pages)
    Edition: 1st ed.
    ISBN: 9780080474908
    DDC: 661.0684
    Language: English
    Note: Front Cover -- Copyright Page -- Germanium-Based Technologies -- Contents -- Editors -- Contributors -- List of Acronyms -- List of Symbols -- Introduction -- 1 Introduction -- 2 Historical Perspective and Milestones -- 3 Ge as a Novel ULSI Substrate: Opportunities and Challenges -- 4 Outline of the Book -- References -- Chapter 1 Germanium Materials -- 1.1 Introduction -- 1.2 Bulk Wafer Manufacturing -- 1.2.1 Germanium raw materials: supply and production flow sheet -- 1.2.1.1 Supply -- 1.2.1.2 Production flow sheet -- 1.2.2 Germanium crystal growth -- 1.2.2.1 Introduction and specific features of Czochralski Ge crystal growth -- 1.2.2.2 Ge single crystals for IR optics -- 1.2.2.3 HP-Ge crystals for radiation detectors -- 1.2.2.4 Dislocation-free Ge crystals -- 1.2.2.5 Modeling of Ge crystal growth -- 1.2.3 Germanium wafer manufacturing -- 1.2.3.1 Introduction -- 1.2.3.2 Wafer preparation: general remarks -- 1.2.3.3 Wafer preparation: process steps -- 1.2.3.4 Germanium recycling -- 1.3 GOI Substrates -- 1.3.1 Back-grind SOI -- 1.3.2 GOI substrates by layer transfer -- 1.3.2.1 Donor wafers -- 1.3.2.2 GOI realization -- 1.3.2.3 Characterization of GOI substrates -- 1.3.2.4 GOI MOSFETs -- 1.3.2.5 GOI as III-V epitaxy template -- 1.4 General Conclusion -- References -- Chapter 2 Grown-in Defects in Germanium -- 2.1 Introduction -- 2.2 Intrinsic Point Defects in Germanium -- 2.2.1 Simulation of intrinsic point defect properties -- 2.2.2 Experimental data on vacancy properties -- 2.2.3 Application of the Voronkov model to germanium -- 2.3 Extrinsic Point Defects -- 2.3.1 Dopants -- 2.3.2 Neutral point defects -- 2.3.3 Carbon -- 2.3.4 Hydrogen -- 2.3.5 Oxygen -- 2.3.6 Nitrogen -- 2.3.7 Silicon -- 2.4 Dislocation Formation During Czochralski Growth -- 2.4.1 Thermal simulation -- 2.4.2 Development of mechanical stresses. , 2.4.3 Mechanical properties of germanium -- 2.4.4 Dislocation nucleation and multiplication during crystal pulling -- 2.4.5 Electrical impact of dislocations in germanium -- 2.5 Point Defect Clustering -- 2.5.1 Experimental observations of vacancy clustering -- 2.5.2 Modeling and simulation of vacancy cluster formation -- 2.6 Conclusions -- Acknowledgements -- References -- Chapter 3 Diffusion and Solubility of Dopants in Germanium -- 3.1 Introduction -- 3.2 Diffusion in Semiconductors -- 3.2.1 Diffusion mechanisms -- 3.2.2 Self-diffusion -- 3.3 Intrinsic Point Defects in Germanium -- 3.3.1 Quenching -- 3.3.2 Irradiation -- 3.4 Self- and Group IV Diffusion in Germanium and Silicon -- 3.4.1 Radioactive tracer experiments -- 3.4.2 Isotope effects and Group IV (Si -- Sn) diffusion in Ge -- 3.4.3 Doping and pressure effects -- 3.4.4 Diffusion of Ge in Si -- 3.5 Solubility of Impurities in Germanium -- 3.6 Diffusion of Group III and V Dopants in Germanium -- 3.6.1 Group III acceptor diffusion -- 3.6.1.1 Boron -- 3.6.1.2 Aluminum -- 3.6.1.3 Indium and gallium -- 3.6.2 Group V donor diffusion -- 3.6.2.1 Phosphorus -- 3.6.2.2 Arsenic -- 3.6.2.3 Antimony -- 3.6.3 Electric field effects on dopant diffusion in Ge -- 3.6.4 Summary -- 3.7 General Conclusion -- References -- Chapter 4 Oxygen in Germanium -- 4.1 Introduction -- 4.2 Interstitial Oxygen -- 4.2.1 Measurement of oxygen concentration -- 4.2.2 Diffusion and solubility -- 4.2.3 Structure of the vibration spectrum and defect model -- 4.3 TDs and the Oxygen Dimer -- 4.3.1 Electronic states of TDs -- 4.3.2 Vibrational spectrum of TDs -- 4.3.3 Vibrational spectrum of the oxygen dimer -- 4.4 Infrared Absorption of Oxygen Precipitates -- 4.5 The Vacancy-Oxygen Defect -- 4.6 Conclusions -- References -- Chapter 5 Metals in Germanium -- 5.1 Introduction -- 5.2 Copper in Germanium. , 5.2.1 Distribution coefficient k[sub(d)] -- 5.2.2 Configurations of atomic Cu in Ge -- 5.2.3 The dissociative copper diffusion mechanism -- 5.2.4 Impact of doping density on Cu diffusion and solubility -- 5.2.5 Dissociative versus kick-out mechanism for copper diffusion in germanium -- 5.2.6 Precipitation of copper in germanium -- 5.2.7 Energy levels and capture cross sections of substitutional copper -- 5.2.8 Energy level for interstitial copper and Cu[sub(s)]-Cu[sub(i)] pairs -- 5.2.9 Impact of copper on carrier lifetime in germanium -- 5.3 Ag, Au and Pt in Germanium -- 5.3.1 Distribution coefficient, solubility and diffusivity -- 5.3.2 Energy levels and capture cross sections -- 5.3.3 Impact on carrier lifetime -- 5.4 Nickel in Germanium -- 5.4.1 Solubility and diffusivity of Ni in Ge -- 5.4.2 Energy levels and capture cross sections of Ni in Ge -- 5.4.3 Impact on carrier lifetime -- 5.5 TMs in Germanium -- 5.5.1 Iron -- 5.5.2 Cobalt -- 5.5.3 Manganese -- 5.5.4 Other TMs -- 5.5.4.1 Chromium -- 5.5.4.2 Zirconium -- 5.5.4.3 Titanium and vanadium -- 5.6 Chemical Trends in the Properties of Metals in Ge -- 5.6.1 Electrical properties -- 5.6.2 Optical properties of metals in germanium -- 5.6.3 Trends in the impact on carrier lifetime in Ge -- 5.7 Conclusions -- References -- Chapter 6 Ab-Initio Modeling of Defects in Germanium -- 6.1 Introduction -- 6.2 Quantum Mechanical Methods -- 6.2.1 Clusters and supercells -- 6.3 Kohn-Sham and Occupancy Levels -- 6.4 Formation Energies, Vibrational Modes, Energy levels -- 6.5 Defect Modeling in Ge -- 6.6 Defects in Germanium -- 6.6.1 Vacancies and divacancies in Ge -- 6.6.2 The self-interstitial -- 6.6.3 Nitrogen defects -- 6.6.4 Carbon in germanium -- 6.6.5 Oxygen in germanium -- 6.6.6 Thermal donors -- 6.6.7 Hydrogen in germanium -- 6.7 Electrical Levels of Defects -- 6.8 Summary -- References. , Chapter 7 Radiation Performance of Ge Technologies -- 7.1 Introduction -- 7.2 Interaction of Radiation with Solids -- 7.2.1 Damage processes -- 7.2.2 Comparison of electron, gamma ray, neutron and proton damage -- 7.2.3 Ion-implantation damage -- 7.3 Primary Radiation-Induced Defects and their Interactions with Impurities in Crystalline Ge -- 7.3.1 Frenkel-pairs, the lattice vacancy, divacancy and self-interstitial atom in Ge -- 7.3.2 Interaction of the intrinsic points defects with impurities in Ge -- 7.3.3 Ion-implantation-induced damage: multi-vacancy and multi-self-interstitial complexes in Ge -- 7.4 Effects on Devices -- 7.5 Conclusions -- References -- Chapter 8 Electrical Performance of Ge Devices -- 8.1 Introduction -- 8.2 Germanium p-n Junctions -- 8.2.1 Theory of a large-area p-n junction -- 8.2.2 Theory of a planar p-n junction -- 8.2.3 Theory of an ideal germanium p-n junction -- 8.2.4 Germanium bulk p-n junction diodes -- 8.2.5 State-of-the-art shallow germanium p-n junctions -- 8.3 Germanium-Based Gate Stacks -- 8.3.1 Equivalent oxide thickness -- 8.3.2 Ge/HfO[sub(2)] gate stacks -- 8.3.3 Passivation by an ultra-thin GeON interlayer -- 8.3.4 Si surface passivation -- 8.3.5 PH[sub(3)] surface passivation -- 8.3.6 Alternative high-k on Ge -- 8.4 Conclusion -- Acknowledgements -- References -- Chapter 9 Device Modeling -- 9.1 Introduction -- 9.2 Modeling Germanium versus Silicon -- 9.3 Band Structure -- 9.3.1 Conduction band of bulk germanium -- 9.3.2 Valence band of bulk germanium -- 9.3.3 Energy dispersion in germanium inversion layers: electrons -- 9.3.4 Energy dispersion in germanium inversion layers: holes -- 9.4 Performance Limit -- 9.4.1 Analytical expression for the ballistic current -- 9.4.2 Results: Ge versus Si MOSFETs -- 9.5 Semi-classical Transport -- 9.5.1 BTE: bulk semiconductor -- 9.5.2 BTE: 2D inversion layers. , 9.5.3 Solution of the BTE: methods based on the moments -- 9.5.4 Solution of the BTE: MC for bulk Ge -- 9.5.5 MC with quantum corrections -- 9.5.6 Multi-subband MC -- 9.6 Conclusions -- References -- Chapter 10 Nanoscale Germanium MOS Dielectrics and Junctions -- 10.1 Introduction -- 10.2 Germanium Oxynitride Dielectrics -- 10.2.1 Germanium oxynitride synthesis and properties -- 10.2.2 Basic MOS electrical characterizations -- 10.2.3 Dielectric-substrate interface analyses -- 10.2.4 Dielectric leakage behavior -- 10.2.5 Summary -- 10.3 High-permittivity Metal Oxide Dielectrics -- 10.3.1 High-k dielectrics selection criteria -- 10.3.2 ALD of high-k dielectrics -- 10.3.2.1 ALD of zirconia -- 10.3.2.2 ALD of hafnia -- 10.3.3 UVO of high-k dielectrics -- 10.3.3.1 UVO of zirconia -- 10.3.3.2 Zirconia-germanium interface photoemission spectroscopy -- 10.3.3.3 UVO of hafnia -- 10.3.4 Other high-k deposition techniques -- 10.3.4.1 Metal-organic chemical vapor deposition of hafnia -- 10.3.4.2 PVD of zirconia and hafnia -- 10.3.4.3 Atomic oxygen beam deposition of hafnia -- 10.3.5 Nanoscale dielectrics leakage and scalability -- 10.3.6 Summary -- 10.4 Shallow Junctions in Germanium -- 10.4.1 Ion implantation doping -- 10.4.1.1 p-type junction activation with furnace anneal -- 10.4.1.2 Complementary junction activation with rapid thermal anneal -- 10.4.1.3 n-type junction activation dependences -- 10.4.2 SSD doping -- 10.4.2.1 n-type junction activation and diffusion -- 10.4.2.2 Dopant deactivation within activated junctions -- 10.4.3 Metal germanide contacts -- 10.4.4 Summary -- 10.5 General Conclusion -- References -- Chapter 11 Advanced Germanium MOS Devices -- 11.1 Introduction -- 11.2 The Quest for High Mobility MOSFET Channel -- 11.2.1 Challenges to scaling conventional CMOS -- 11.2.2 High mobility channel justification and selection. , 11.3 Relaxed Bulk Channel Germanium MOSFETs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (464 pages)
    Edition: 1st ed.
    ISBN: 9783319939254
    Series Statement: Springer Series in Materials Science Series ; v.270
    Language: English
    Note: Intro -- Preface -- Contents -- Abbreviations -- Symbols -- Greek Symbols -- 1 Introduction -- References -- 2 Basic Properties of Transition Metals in Semiconductors -- 2.1 Solid Solubility -- 2.2 Diffusivity -- 2.2.1 Ion Pairing and Doping Effects -- 2.3 Segregation and Precipitation -- 2.4 Electrical Properties of Transition Metals -- References -- 3 Source of Metals in Si and Ge Crystal Growth and Processing -- 3.1 Crystal Growth -- 3.2 Wet Wafer Cleaning Processes -- 3.2.1 Contamination in Si Cleaning Technology -- 3.2.2 Contamination in Ge Cleaning Technology -- 3.3 Dry Vapor Phase Wafer Cleaning -- 3.4 Photoresist Deposition and Stripping -- 3.5 Wafer Handling -- 3.6 Ion Implantation -- 3.7 Thermal Processing -- 3.8 Metal Layers in Device Fabrication -- 3.8.1 Silicidation and Germanidation -- 3.8.2 Metallization -- 3.8.3 3D Integration-Through Silicon Vias (TSV) -- 3.8.4 Ferroelectric Memories -- References -- 4 Characterization and Detection of Metals in Silicon and Germanium -- 4.1 Chemical Analysis of Metals -- 4.1.1 Elemental Analysis of Surface Metal Contamination -- 4.1.2 Elemental Analysis of Bulk Metal Contamination -- 4.1.3 Electron Paramagnetic Resonance -- 4.1.4 Mössbauer Spectroscopy -- 4.2 Structural Analysis -- 4.2.1 Structural Analysis of Metal Precipitates -- 4.2.2 Structural Analysis of Metal-Related Point Defects -- 4.3 Electrical Analysis -- 4.3.1 Theoretical and Practical Considerations for Lifetime Measurements -- 4.3.2 Surface Photo Voltage Lifetime Analysis -- 4.3.3 PhotoConductance Decay (PCD) and QSS-PC Method -- 4.3.4 ELYMAT -- 4.3.5 PL Imaging -- 4.3.6 Carrier Lifetime by IR Imaging -- 4.3.7 Lifetime Mapping of Extended Defects -- 4.3.8 MOS Generation Lifetime Techniques -- 4.3.9 Deep-Level Transient Spectroscopy -- 4.4 Strategy for Metal Contamination Monitoring -- References. , 5 Electrical Activity of Iron and Copper in Si, SiGe and Ge -- 5.1 Iron -- 5.1.1 Configurations of Fe -- 5.1.1.1 Interstitial and Substitutional Fe -- 5.1.1.2 Dopant-Iron Pairs -- 5.1.1.3 Small Fe-Related Clusters and Fe-Related Complexes -- 5.1.1.4 Fe Precipitation -- 5.1.2 Electrical Properties of Fe -- 5.1.2.1 Fei and FeA Pairs in Silicon -- 5.1.2.2 Fe-Related Point Defects in Si and Ge -- 5.1.2.3 Fe-Related Clusters and Precipitates -- 5.1.2.4 Fe Activation of Extended Defects -- 5.1.3 Detection and Identification of Fe in Silicon -- 5.2 Copper -- 5.2.1 Configurations of Copper -- 5.2.1.1 Cu-Related Point Defects -- 5.2.1.2 Heterogeneous Precipitation of Copper -- 5.2.1.3 Homogeneous Precipitation of Copper -- 5.2.1.4 Precipitation Versus Out-Diffusion -- 5.2.2 Electrical Activity of Cu -- 5.2.2.1 Copper-Related Point Defects -- 5.2.2.2 Electrical Activity of Precipitated Copper -- 5.2.2.3 Copper Activation and Passivation of Extended Defects -- 5.2.3 Detection of Copper -- 5.2.3.1 Lifetime-Based Sensitive Copper Detection -- 5.2.3.2 Transient Ion Drift Analysis of Copper in Silicon -- References -- 6 Electrical Properties of Metals in Si and Ge -- 6.1 Nickel in Si and Ge -- 6.1.1 Ni-related Point Defects and Complexes -- 6.1.2 Precipitation and Co-precipitation of Ni -- 6.1.2.1 Homogeneous and Heterogeneous Precipitation of NiSi2 -- 6.1.2.2 Co-precipitation of Nickel in Silicon -- 6.1.3 Electrical and Optical Activity of Ni -- 6.1.3.1 Nickel-Related Point Defects and Complexes -- 6.1.3.2 Electrically Active Point Defects in Ge and SiGe -- 6.1.3.3 Electrical Activity of Nickel Precipitates -- 6.1.3.4 Nickel-Decorated Extended Defects -- 6.1.4 Impact of Ni on Recombination Lifetime -- 6.2 Cobalt in Si and Ge -- 6.2.1 Co-related Species in Si -- 6.2.1.1 Atomic and Clustered Species -- 6.2.1.2 Buried CoSi2 Formation. , 6.2.2 Electrical and Optical Activity of Co in Si -- 6.2.2.1 Levels from Resistivity and Photoconductivity -- 6.2.2.2 Deep Levels from Space-Charge Transient Techniques (DLTS) -- 6.2.3 Impact on Lifetime -- 6.3 Chromium in Si and Ge -- 6.3.1 Configurations of Cr in Si -- 6.3.2 Electrical and Optical Activity of Cr in Si -- 6.3.2.1 Electrical Properties -- 6.3.2.2 Optical Properties -- 6.3.2.3 Impact of Cr on Lifetime in Silicon -- 6.3.2.4 Identification of Cr in Silicon by Lifetime Measurements -- 6.4 Titanium -- 6.5 Molybdenum -- 6.6 Palladium -- 6.7 Platinum -- 6.8 Gold -- 6.9 Scandium -- 6.10 Vanadium -- 6.11 Manganese -- 6.12 Zinc -- 6.13 Zirconium -- 6.14 Niobium -- 6.15 Ruthenium -- 6.16 Rhodium -- 6.17 Silver -- 6.18 Cadmium -- 6.19 Hafnium -- 6.20 Tantalum -- 6.21 Tungsten -- 6.22 Rhenium-Osmium -- 6.23 Iridium -- 6.24 Mercury -- References -- 7 Impact of Metals on Silicon Devices and Circuits -- 7.1 MOS Capacitors -- 7.1.1 Impact of Metal Contamination on MOS Capacitors -- 7.1.1.1 Diffusion, Precipitation and Segregation of Metals in Dielectric Layers -- 7.1.1.2 Impact of Fe on MOS Capacitors -- 7.1.1.3 Impact of Nickel on MOS Capacitors -- 7.1.2 Impact of Copper on MOS Capacitors -- 7.1.2.1 Basic Properties of Copper in SiO2 -- 7.1.2.2 Diffusion of Cu in Low-κ Dielectrics -- 7.1.2.3 Impact of Cu on MOS Capacitors -- 7.1.2.4 Impact on Interlayer Dielectric Integrity -- 7.2 Impact on p-n Junction Devices and Schottky Barriers -- 7.2.1 Metal Contamination in p-n Junctions -- 7.2.1.1 Impact of Copper -- 7.2.1.2 Impact of Other TMs -- 7.2.2 Silicidation-Induced Metal Contamination -- 7.2.2.1 Ti-Silicidation -- 7.2.2.2 Co-silicidation -- 7.2.2.3 Ni-Silicidation -- 7.2.3 Metal Contamination in Silicon Solar Cells -- 7.2.3.1 Impact Defects on Solar Cell Parameters -- 7.2.3.2 Impact Specific TMs on Solar Cells. , 7.2.3.3 Acceptable Metal Levels in Mc-Si Solar Cells -- 7.2.4 Impact on Schottky Barriers -- 7.3 Impact on Transistors and on Circuit Operation and Yield -- 7.3.1 Impact on Transistors -- 7.3.2 Impact on Circuits -- 7.3.3 Impact on Yield -- References -- 8 Gettering and Passivation of Metals in Silicon and Germanium -- 8.1 Gettering Strategies -- 8.1.1 Metal Gettering Mechanisms -- 8.2 Backside Gettering Mechanisms -- 8.2.1 Glass Layer Gettering -- 8.2.2 Thin Layer Gettering -- 8.2.2.1 Aluminum Films -- 8.2.2.2 Silicon Nitride and Polysilicon Layers -- 8.2.3 Ion Implantation Gettering -- 8.3 Intrinsic Gettering Mechanisms -- 8.4 Frontside Gettering Techniques -- 8.4.1 Buried Epitaxial or Porous Si Layer -- 8.4.2 Ion Implantation -- 8.4.2.1 Nano Cavities -- 8.4.2.2 Near-Surface Proximity Gettering -- 8.5 Gettering in SOI Material -- 8.5.1 SIMOX SOI Material -- 8.5.2 Ultra-thin Body and BOX (UTBB) -- 8.6 Gettering Processes for Photovoltaics -- 8.7 Modeling Gettering Processes -- References -- 9 Modeling of Metal Properties in Si, Si1−xGex and Ge -- 9.1 Modeling Approaches -- 9.1.1 EPR-Based Models -- 9.1.2 First-Principles Calculations -- 9.1.3 Calculation of Parameters in DFT -- 9.2 Configurations of Individual Metal Atoms -- 9.2.1 Trends in the Properties of 3d TMs in Si and Ge -- 9.2.2 Iron in Si and SiGe -- 9.2.3 Copper in Si -- 9.2.4 Cobalt in Si -- 9.2.5 Vanadium in Si -- 9.2.6 Manganese in Si and Ge -- 9.3 Diffusion of Metal Atoms in Si and Ge -- 9.3.1 Elastic Energy Approach -- 9.3.2 Thermodynamic Approach -- 9.3.3 DFT and MD Calculations -- 9.4 Interactions of Metals with Dopants, H, O, C in Si and Ge -- 9.4.1 Interaction with Dopants -- 9.4.2 Interaction with Hydrogen -- 9.4.3 Interaction with Oxygen and Carbon -- 9.5 Interactions of Metals with Other Defects, Clustering and Gettering -- 9.5.1 Metal Pairs, Clusters and Precipitates. , 9.5.2 Interaction with Implantation and Extended Defects -- 9.5.3 First-Principles Studies of Metal Gettering -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: In order to identify an appropriate low-temperature surface passivation that could be usedfor bulk lifetime estimation of high resistivity (HR) (〉 1 k[removed info]·cm) silicon for radiation detectors,different passivating layers were evaluated on n-type and p-type standard Czochralski (CZ), HRmagnetic CZ and HR float zone (FZ) substrates. Minority carrier lifetime measurements wereperformed by means of a μW-PCD set-up. The results show that SiNx PECVD layers deposited atlow temperatures (≤ 250ºC) may be used to evaluate the impact of different processing steps andtreatments on the substrate characteristics for radiation detectors. First results are obtained about apreliminary thermal treatment experiment to evaluate the thermal stability of the passivating layers,as well as the potential impact of the generation of thermal donors on minority carrier lifetime
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 131-133 (Oct. 2007), p. 47-52 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: In this paper, the deep levels occurring in Fe- or Co-germanide Schottky barriers on ntypeGe have been studied by Deep Level Transient Spectroscopy (DLTS). As is shown, no trapshave been found for germanidation temperatures up to 500 oC, suggesting that in both cases nomarked metal in-diffusion takes place during the Rapid Thermal Annealing (RTA) step. Deepacceptor states in the upper half of the Ge band gap and belonging to substitutional Co and Fe canbe detected by DLTS only at higher RTA temperatures (TRTA). For the highest TRTA, deep levelsbelonging to other metal contaminants (Cu) have been observed as well. Simultaneously, the reversecurrent of the Schottky barriers increases with TRTA, while the barrier height is also stronglyaffected
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 19-20 (Jan. 1991), p. 493-498 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: The electrical activity of threading dislocations (TDs), occurring in a thin SiGe Strain Relaxed Buffer (SRB) layer has been investigated by a number of techniques and its impact on the reverse current of p-n junction diodes has been evaluated. It is shown that besides the density of TD, there are at least two other parameters playing an important role. The distance with respect to the metallurgical junction of the 5 nm C-rich layer, used for the strain relaxation and the dopant type in the well region also affect the leakage current. This complex behaviour is further reflected in the Emission Microscopy (EMMI) images, showing different breakdown sites for p+/n or n+/p junctions. Results will be presented whereby one of these parameters is varied, while the others are kept constant, in order to arrive at some idea of the relative importance of the different factors
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: P-n junctions are created in p-type Czochralski silicon after a low temperature (270°C) hydrogen plasma exposure. This is attributed to the formation of hydrogen-related shallow donors. A deep level (E1) with an activation energy of about EC-0.12 eV is observed by DLTS measurement and assigned to a metastable state of the hydrogen-related shallow donors. At an annealing temperature of 340°C, the E1 centres disappear and oxygen thermal donors appear. The concentrations of the oxygen thermal donors are found typically to be 2-3 decades lower than that required for over-compensating the initial p-type doping and for contributing the excess free carriers
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: The formation of shallow junctions in germanium substrates, compatible with deep submicron CMOS processing is discussed with respect to dopant diffusion and activation and damage removal. Examples will be discussed for B and Ga and for P and As, as typical p- and n-type dopants, respectively. While 1 to 60 s Rapid Thermal Annealing at temperatures in the range 400-650oC have been utilized, in most cases, no residual extended defects have been observed by RBS and TEM. It is shown that 100% activation of B can be achieved in combination with a Ge pre-amorphisation implant. Full activation of a P-implant can also be obtained for low-dose implantations, corresponding with immobile profiles. On the other hand, for a dose above the threshold for amorphisation, a concentration-enhanced diffusion of P occurs, while a lower percentage of activation is observed. At the same time, dose loss by P out-diffusion occurs, which can be limited by employing a SiO2 cap layer
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 57-58 (July 1997), p. 477-482 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...