GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-20
    Description: We introduce an ultrasensitive label-free detection technique based on asymmetric Fano resonances in plasmonic nanoholes with far reaching implications for point-of-care diagnostics. By exploiting extraordinary light transmission phenomena through high-quality factor (Qsolution ∼ 200) subradiant dark modes, we experimentally demonstrate record high figures of merits (FOMs as high as 162) for intrinsic detection limits surpassing that of the gold standard prism coupled surface-plasmon sensors (Kretschmann configuration). Our experimental record high sensitivities are attributed to the nearly complete suppression of the radiative losses that are made possible by the high structural quality of the fabricated devices as well as the subradiant nature of the resonances. Steep dispersion of the plasmonic Fano resonance profiles in high-quality plasmonic sensors exhibit dramatic light intensity changes to the slightest perturbations within their local environment. As a spectacular demonstration of the extraordinary sensitivity and the quality of the fabricated biosensors, we show direct detection of a single monolayer of biomolecules with naked eye using these Fano resonances and the associated Wood’s anomalies. To fabricate high optical-quality sensors, we introduce a high-throughput lift-off free evaporation fabrication technique with extremely uniform and precisely controlled nanofeatures over large areas, leading to resonance line-widths comparable to that of the ideally uniform structures as confirmed by our time-domain simulations. The demonstrated label-free sensing platform offers unique opportunities for point-of-care diagnostics in resource poor settings by eliminating the need for fluorescent labeling and optical detection instrumentation (camera, spectrometer, etc.) as well as mechanical and light isolation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-07
    Description: Plasmonic cavities represent a promising platform for controlling light–matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light’s coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED)...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 8-11 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Raman scattering instability of an intense laser pulse in a plasma channel proceeds differently than in a homogeneous plasma: The growth rate is reduced and the scaling with the laser intensity modified. These differences, significant even for shallow plasma channels, arise because of the radial shear of the plasma frequency and the existence of the weakly damped hybrid (electrostatic/electromagnetic) modes of the radially inhomogeneous plasma. The interplay of these two effects produces double-peaked spectra for the direct forward scattering in a channel. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 428-436 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the presence of a high-frequency intense uniform electric field, the collisions of electrons with ions can be made more frequent or less frequent, depending on the polarization of the hf field, the direction and magnitude of particle velocity, and the ratio of the plasma Debye length to the size of the electron oscillation in the hf field. The stimulated bremsstrahlung emission is calculated for both circularly and linearly polarized fields. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1109-1112 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new nonlinear Raman instability in underdense plasma is investigated theoretically. Unlike the usual linear Raman instabilities which grow exponentially in time, this instability takes a finite amount of time to diverge. The explosion time t∞ depends on the initial level of the perturbation. A general set of equations for spatio-temporal evolution of the forward nonlinear Raman scattering is derived and its temporal evolution is studied in detail. This new instability results in the generation of forward Raman radiation shifted by half the plasma frequency for laser intensities of order or exceeding 1018 W/cm2, something that has been recently observed [A. Modena (private communication, 1995)]. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 310-318 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The accelerating and focusing wake fields that can be excited by a short laser pulse in a hollow underdense plasma are examined. The evacuated channel in the plasma serves as an optical fiber to guide the laser pulse over many Rayleigh lengths. Wake fields excited by plasma current at the edge of the channel extend to the center where they may be used for ultrahigh gradient acceleration of particles over long distances. The wake field and equilibrium laser profiles are found analytically and compared to two-dimensional (2-D) particle-in-cell (PIC) simulations. Laser propagation is simulated over more than ten Rayleigh lengths. The accelerating gradients on the axis of a channel of radius c/ωp are of order of one-half of the gradients in a uniform plasma. For present high-power lasers, multi-GeV/m gradients are predicted. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2232-2240 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser energies and powers, significantly much higher than available now through the most advanced chirped pulse amplifiers, might be achieved in much smaller devices. The working medium in such devices is plasma, capable of tolerating ultrahigh laser intensities within times shorter than it takes for filamentation instabilities to develop. The ultrafast amplification mechanism that outruns filamentation instabilities is the transient Raman backscattering of a laser pump in plasma. In principle, this mechanism is fast enough to reach nearly relativistic pumped pulse intensities, like 1017 W/cm2 for λ=1 μm wavelength radiation. Such a nonfocused intensity would be 105 times higher than currently available. This mechanism also produces complete pump depletion. Many amplifiers with expensive and fragile meter-size gratings might then be replaced by a single amplifier comprised of a 1 cm size plasma layer. Raman instabilities of the pump to noise, as the pump traverses plasma layer towards the seed pulse, can be suppressed by detuning the resonance appropriately, even as the desired amplification process persists with high efficiency due to nonlinear resonance broadening. Moreover, since the peak intensity scales like 1/λ2, even much higher laser intensities might become feasible when appropriate x-ray pump lasers are developed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 591-602 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Excitation of accelerating modes in transversely inhomogeneous plasma channels is considered as an initial value problem. Discrete eigenmodes are supported by plasma channels with sharp density gradients. These eigenmodes are collisionlessly damped as the gradients are smoothed. Using collisionless Landau damping as the analogy, the existence and damping of these "quasi-modes" is studied by constructing and analytically continuing the causal Green's function of wake excitation into the lower half of the complex frequency plane. Electromagnetic nature of the plasma wakes in the channel makes their excitation nonlocal. This results in the algebraic decay of the fields with time due to phase-mixing of plasma oscillations with spatially-varying frequencies. Characteristic decay rate is given by the mixing time τm, which corresponds to the dephasing of two plasma fluid elements separated by the collisionless skin depth. For wide channels analytic expressions for the field evolution are derived. Implications for electron acceleration in plasma channels are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 157-166 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Frequency shifting in free-electron laser (FEL) oscillators and amplifiers is investigated theoretically and numerically. The analysis includes frequency shifts from the resonant FEL interaction and the nonresonant beam dielectric. Expressions for the frequency shift in a microwave amplifier with time-dependent beam energy and current are derived and found to be in good agreement with experiments. The theory shows that temporal changes in the detuning are the dominant factor in determining the frequency shift. Electron energy fluctuations produce frequency shifts in the Compton regime, while both current and energy variations are significant in the Raman regime. The effect is particularly important for high-power microwave drivers proposed for high gradient accelerators, where the phase of the radio-frequency radiation is subject to significant constraints. FEL oscillator response to variations in beam energy is examined. It is shown that in a low-gain oscillator which experiences a sudden jump in beam energy the FEL creates spikes at the head and tail of the beam which are at the shifted frequency. The shifting is generated by time dependence in dielectric function which arises from slippage and finite lengths of the electron or optical pulse. The propagation diffusion equation is shown to describe the propagation of the spikes into the main body of the pulse.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 1872-1880 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new formalism to describe the spatiotemporal evolution of relativistic Raman backscatter (RBS) of ultrashort laser pulses in underdense plasma has been developed. This theory is based on an eikonal representation for the RBS field and averaging over the oscillation frequency. Equations are derived for the evolution of the RBS radiation field amplitude and phase and for particle motion in the ponderomotive potential of the pump and RBS fields. A technique similar to that used in Raman free electron lasers is used to include the plasma density oscillation and its electric field in the particle equations. The equations have been solved numerically in a code that provides an accurate description of the nonlinear electron motion on a short spatial scale of half the radiation wavelength, while at the same time evolving the laser field on a much coarser scale, characteristic of the growth rate of the instability. Two-dimensional nonlinear effects, such as the return current, are analytically estimated and phenomenologically incorporated in the numerical code. The results of recent (RBS) experiments are compared with the analytical and numerical predictions of the theory. A statistical theory of the linear RBS instability growing from plasma noise is developed. It is found that in the nonlinear regime backscattered radiation, seeded by random density fluctuations in the plasma, breaks up into spikes, which exhibit superradiant behavior. These effects might explain the spikiness of the RBS spectra in the nonlinear regime. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...