GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2021-05-11
    Description: The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism.
    Description: Published
    Description: 262-282
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-26
    Description: Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values ( 18) and the isotopic composition of C1–C3alkanes, CO2and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1–C4alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167–213◦C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2and thus abiotic production of CH4via CO2reduction. We propose that the Songliao gas is representative of an atypical type of thermogenic gas that can be mistaken for abiotic gas. Such gases may be encountered more frequently in future exploration of deep or over-mature petroleum systems.
    Description: Published
    Description: 213-221
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...