GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 114(2009), 2169-9291
    In: volume:114
    In: year:2009
    In: extent:14
    Description / Table of Contents: The relationship between Loop Current intrusion in the Gulf of Mexico and vertically integrated transport variations through the Yucatan Channel is examined using models and the available observations. Transport in the model is found to be a minimum when the Loop Current intrudes strongly into the Gulf of Mexico, typically just before a ring is shed, and to be a maximum during the next growth phase in association with the buildup of warm water off the northwest coast of Cuba. We argue that the transport variations are part of a "compensation effect" in which transport variations through the Yucatan Channel are at least partly compensated by flow around Cuba. Numerical experiments show that the transport variations result from the interaction between the density anomalies associated with Loop Current intrusion and the variable bottom topography. The compensation effect is also shown to operate at shorter time scales (less than 30 days) in association with wind forcing.
    Type of Medium: Online Resource
    Pages: 14 , graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-12
    Description: A method using a linear shallow water model is presented for decomposing the temporal variability of the barotropic stream function in a high-resolution ocean model. The method is based on the vertically averaged momentum equations and is applied to the time series of annual mean stream function from the model configuration VIKING20 for the northern North Atlantic. An important result is the role played by the nonlinear advection terms in VIKING20 for driving transport. The method is illustrated by examining how the Gulf Stream transport in the recirculation region responds to the winter North Atlantic Oscillation (NAO). While no statistically significant response is found in the year overlapping with the winter NAO index, there is a tendency for the Gulf Stream transport to increase as the NAO becomes more positive. This becomes significant in lead years 1 and 2 when the mean flow advection and eddy momentum flux contributions, associated with nonlinear momentum advection, dominate. Only after 2 years, does the potential energy term, associated with the density field, start to play a role and it is only after 5 years that the transport dependence on the NAO ceases to be significant. It is also shown that the potential energy contribution to the transport stream function has significant memory of up to 5 years in the Labrador and Irminger Seas. However, it is only around the northern rim of these seas that VIKING20 and the transport reconstruction exhibit similar memory. This is due to masking by the mean flow advection and eddy momentum flux contributions.
    Keywords: 551.46 ; North Atlantic ; transport variability ; high-resolution model
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Atmosphere-Ocean, 51 (2). pp. 213-225.
    Publication Date: 2019-09-23
    Description: We present a new method for the statistical downscaling of coarse-resolution General Circulation Model (GCM) fields to predict local climate change. Most atmospheric variables have strong seasonal cycles. We show that the prediction of the non-seasonal variability of maximum and minimum daily surface temperature is improved if the seasonal cycle is removed prior to the statistical analysis. The new method consists of three major steps. First, the average seasonal cycles of both predictands and predictors are removed. Second, a principal component-based multiple linear regression model between the deseasonalized predictands and predictors is developed and validated. Finally, the regression is used to make projections of future changes in maximum and minimum daily surface temperature at Shearwater, Nova Scotia. This projection is made using the local grid-scale variables of the Canadian General Circulation Model Version 3 (CGCM3) climate model as predictors. Our statistical downscaling method indicates significant skill in predicting the observed distribution of temperature using GCM predictors. Projections suggest minimum and maximum temperatures at Shearwater will be up to about five degrees warmer by 2100 under the current “business-as-usual” scenario. RÉSUMÉ [Traduit par la rédaction] Nous présentons une nouvelle méthode pour la réduction d'échelle statistique des champs des modèles de circulation générale (MCG) à faible résolution pour prévoir les changements du climat local. La plupart des variables atmosphériques ont des cycles saisonniers bien marqués. Nous démontrons que la prédiction de la variabilité non saisonnière de la température de surface quotidienne minimum et maximum est meilleure si on retranche le cycle saisonnier avant de procéder à l'analyse statistique. Voici les trois grandes étapes de cette nouvelle méthode. D'abord, nous retirons les cycles saisonniers moyens des prédictants et des prédicteurs. Ensuite, nous concevons et validons un modèle de régression linéaire multiple sur composantes principales entre les prédictants et les prédicteurs désaisonnalisés. Enfin, nous nous servons de la régression afin d'établir des projections pour les changements à venir dans la température de surface quotidienne minimum et maximum à Shearwater en Nouvelle-Écosse. Cette projection est établie au moyen des variables locales à l'échelle du maillage de la troisième version du modèle canadien de circulation générale (MCCG3). Notre méthode de réduction d'échelle statistique se révèle très efficace pour prédire la répartition observée de la température au moyen des prédicteurs du MCG. D'après les projections, les températures minimum et maximum à Shearwater connaîtront une augmentation d'environ cinq degrés d'ici 2100 dans le scénario actuel de type « statu quo ».
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Based on an empirical orthogonal function analysis of satellite altimeter data, guidance from numerical model results, and CANEK transport estimates, we propose an index, based on differences in satellite-measured sea surface height anomalies, for measuring the influence of Gulf of Mexico Loop Current intrusion on vertically integrated transport variability through the Yucatan Channel. We show that the new index is significantly correlated at low frequencies (cut-off 120 days) with the cable estimates of transport between Florida and the Bahamas. We argue that the physical basis for the correlation is the geometric connectivity between the Yucatan Channel and the Straits of Florida.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Poster] In: 2. European Earth System and Climate Modeling School: 2nd E2SCMS, 09.-20.06.2014, Barcelona, Spain .
    Publication Date: 2014-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: Atmosphere and Ocean Dynamics: A Scientific Workshop to Celebrate Professor Dr Richard Greatbatch's 60th Birthday, 10.-11.04.2014, Liverpool, UK .
    Publication Date: 2014-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: This study examines the circulation and associated monthly-to-seasonal variability in the Caribbean Sea using a regional ocean circulation model. The model domain covers the region between 99.0 and 54.0°W and between 8.0 and 30.3°N, with a horizontal resolution of 1/6°. The ocean circulation model is driven by 6-hourly atmospheric reanalysis data from the National Center for Environmental Prediction and boundary forcing extracted from 5-day global ocean reanalysis data produced by Smith et al. (Mercator Newsletter 36:39–49, 2010), and integrated for 7 years. A comparison of model results with observations demonstrates that the regional ocean circulation model has skill in simulating circulation and associated variability in the study region. Analysis of the model results, as well as a companion model run that uses steady annual mean forcing, illustrates the role of Caribbean eddies for driving monthly-to-seasonal circulation variability in the model. It is found that vertically integrated transport between Nicaragua and Jamaica is influenced by the interaction between the density perturbations associated with Caribbean eddies and the Nicaraguan Ridge. The impact of Caribbean eddies squeezing through the Yucatan Channel is also discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-27
    Description: [1] In the paper “A model study of the vertically integrated transport variability through the Yucatan Channel: Role of Loop Current evolution and flow compensation around Cuba” by Lin et al. (Journal of Geophysical Research, 114, C08003, doi:10.1029/2008JC005199, 2009), in the last sentence of paragraph 31, the word “westward” in “drives enhanced westward” should be “eastward.”
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-19
    Description: We show how a barotropic shallow water model can be used to decompose the mean barotropic transport from a high-resolution ocean model based on the vertically averaged momentum equations. We apply the method to a high-resolution model of the North Atlantic for which the local vorticity budget is both noisy and dominated by small spatial scales. The shallow water model acts as an effective filter and clearly reveals the transport driven by each term. The potential energy (joint effect of baroclinicity and bottom relief) term is the most important for driving transport, including in the northwest corner, while mean flow advection is important for driving transport along f/H contours around the Labrador Sea continental slope. Both the eddy momentum flux and the mean flow advection terms drive significant transport along the pathway of the Gulf Stream and the North Atlantic Current
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: A method using a linear shallow water model is presented for decomposing the temporal variability of the barotropic streamfunction in a high‐resolution ocean model. The method is based in the vertically‐averaged momentum equations and is applied to the time series of annual mean streamfunction from the model configuration VIKING20 for the northern North Atlantic. An important result is the role played by the nonlinear advection terms in VIKING20 for driving transport. The method is illustrated by examining how the Gulf Stream transport in the recirculation region responds to the winter North Atlantic Oscillation (NAO). While no statistically significant response is found in the year overlapping with the winter NAO index, there is a tendency for the Gulf Stream transport to increase as the NAO becomes more positive. This becomes significant in lead years 1 and 2 when the mean flow advection (MFA) and eddy momentum flux (EMF) contributions, associated with nonlinear momentum advection, dominate. Only after 2 years, does the potential energy (PE) term, associated with the density field, start to play a role and it is only after 5 years that the transport dependence on the NAO ceases to be significant. It is also shown that the PE contribution to the transport streamfunction has significant memory of up to 5 years in the Labrador and Irminger Seas. However, it is only around the northern rim of these seas that VIKING20 and the transport reconstruction exhibit similar memory. This is due to masking by the MFA and EMF contributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...