GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Paracoccus pantotrophus grown anaerobically under denitrifying conditions expressed similar levels of the periplasmic nitrate reductase (NAP) when cultured in molybdate- or tungstate-containing media. A native PAGE gel stained for nitrate reductase activity revealed that only NapA from molybdate-grown cells displayed readily detectable nitrate reductase activity. Further kinetic analysis showed that the periplasmic fraction from cells grown on molybdate (3 μM) reduced nitrate at a rate of Vmax=3.41±0.16 μmol [NO3−] min−1 mg−1 with an affinity for nitrate of Km=0.24±0.05 mM and was heat-stable up to 50°C. In contrast, the periplasmic fraction obtained from cells cultured in media supplemented with tungstate (100 μM) reduced nitrate at a much slower rate, with much lower affinity (Vmax=0.05±0.002 μmol [NO3−] min−1 mg−1 and Km=3.91±0.45 mM) and was labile during prolonged incubation at 〉20°C. Nitrate-dependent growth of Escherichia coli strains expressing only nitrate reductase A was inhibited by sub-mM concentrations of tungstate in the medium. In contrast, a strain expressing only NAP was only partially inhibited by 10 mM tungstate. However, none of the above experimental approaches revealed evidence that tungsten could replace molybdenum at the active site of E. coli NapA. The combined data show that tungsten can function at the active site of some, but not all, molybdoenzymes from mesophilic bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...