GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2012-07-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT) and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: During an east-to-west transect through the Canadian Arctic Archipelago, dissolved inorganic carbon (DIC) and total alkalinity (TA) were measured. The watermass composition throughout the Archipelago is determined using TA and the seawater oxygen isotope fractionation (δ18O) data, and the carbon characteristics of these waters are examined. The influence of the Mackenzie River is primarily limited to the upper water column in the western Archipelago while the fraction of sea-ice melt water in the surface waters increases eastward with maximum values at the outflows of Jones and Lancaster Sounds. The depth of Pacific-origin upper halocline waters increases eastward through the Archipelago. In the western Archipelago, non-conservative variations in deep water DIC are used to compute a subsurface carbon surplus, which appears to be fueled by organic matter produced in the surface layer and by benthic respiration. The eastward transport of carbon from the Pacific, via the Arctic Archipelago, to the North Atlantic is estimated, and the impact of increased export of sea-ice melt water to the North Atlantic is discussed. Research highlights: ► Inorganic carbon data from east–west transect in Arctic Archipelago. ► Water mass composition determined with TA, S and d18O. ► Fraction of sea-ice melt water increases eastward though Archipelago. ► Non-conservative variations in DIC indicate subsurface carbon surplus. ► Eastward transport of carbon from Pacific to Atlantic estimated.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...