GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 83 (2002), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Brevican is a neural-specific proteoglycan of the brain extracellular matrix, which is particularly abundant in the terminally differentiated CNS. It is expressed by neuronal and glial cells, and as a component of the perineuronal nets it decorates the surface of large neuronal somata and primary dendrites. One brevican isoform harbors a glycosylphosphatidylinositol anchor attachment site and, as shown by ethanolamine incorporation studies, is indeed glypiated in stably transfected HEK293 cells as well as in oligodendrocyte precursor Oli-neu cells. The major isoform is secreted into the extracellular space, although a significant amount appears to be tightly attached to the cell membrane, as it floats up in sucrose gradients. Flotation is sensitive to detergent treatment. Brevican is most prominent in the microsomal, light membrane and synaptosomal fractions of rat brain membrane preparations. The association with the particulate fraction is in part sensitive to chondroitinase ABC and phosphatidylinositol-specific phospholipase C treatment. Furthermore, brevican staining on the surface of hippocampal neurons in culture is diminished after hyaluronidase or chondroitinase ABC treatment. Taken together, this could provide a mechanism by which perineuronal nets are anchored on neuronal surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Brevican is a member of the aggrecan/versican family of proteoglycans. In contrast to the other family members, brevican occurs both as soluble isoforms secreted into the extracellular space and membrane-bound isoforms which are anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety. Expression of both variants, which are encoded by two differentially processed transcripts from the same gene, is confined to the nervous system. In the current study, we have used in situ hybridization to examine the cellular sites of synthesis for both mRNAs during postnatal development of the rat brain. Whereas the 3.6-kb transcript encoding secreted brevican displays a widespread distribution in grey matter structures, including cerebellar and cerebral cortex, hippocampus and thalamic nuclei with silver grains accumulating over neuronal cell bodies, the smaller transcript (3.3 kb) encoding GPI-anchored isoforms appears to be largely confined to white matter tracts and diffusely distributed glial cells. This expression pattern is further confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) experiments with RNA from different glial cell cultures, and by biochemical data demonstrating that the crude membrane fraction from isolated optic nerve contains high amounts of phosphatidylinositol-specific phospholipase C (PI-PLC)-sensitive brevican immunoreactivity. During ontogenetic development, both brevican transcripts are generally up-regulated. However, the expression of glypiated brevican is delayed by about 1 week, compared with the expression of the secreted isoform. This late appearance of GPI-linked brevican, its predominant expression in glial cells and its tight association with brain myelin fractions suggest a functional role in neuroglia.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: New memories initially persist in a labile state and require protein synthesis-dependent processes of consolidation for long-term manifestation. Using differential conditioning to linearly frequency-modulated tones (FMs) we have recently shown that post-training injections of protein synthesis inhibitors into the auditory cortex of Mongolian gerbils interfere with long-term memory for a number of days. Here, we have used rapamycin as a pharmacological tool to elucidate signalling pathways that control the synthesis of proteins required for persistent memory storage. In mammalian cells, inhibition of target of rapamycin (TOR)-mediated pathways was shown to block the translation of distinct classes of mRNAs. Bilateral infusions of rapamycin into the gerbil auditory cortex shortly after FM discrimination training did not impair the maintenance of the newly acquired memory trace for 24 h, but caused profound retention deficits at 48 h after injection. Control experiments showed that the amnesic action is rapamycin-dependent, confined to the context of memory formation, and suppressed by the antagonist FK506. These data indicate that, in the mammalian brain, activation of rapamycin-sensitive signalling pathways contributes to long-term consolidation of a cerebral cortex-dependent form of memory. Moreover, the finding that rapamycin-induced amnesia parallels only late effects of conventional protein synthesis inhibitors on FM discrimination memory implies that at least two different protein synthesis-dependent processes control memory formation. Both are activated during or shortly after learning. Whereas one process is required for the initial maintenance of memory for about one day the second one is involved in the regulation of its long-lasting persistence in conditioning to FMs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...