GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (21 Seiten, 353,18 KB)
    Language: German
    Note: Förderkennzeichen BMBF 031A533A , Verbundnummer 01157340 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The approach to annotating a genome critically affects the number and accuracy of genes identified in the genome sequence. Genome annotation based on stringent gene identification is prone to underestimate the complement of genes encoded in a genome. In contrast, over-prediction of putative genes ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature 499 (2013): 431–437, doi:10.1038/nature12352.
    Description: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.
    Description: The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the CeBiTec Bioinformatics Resource Facility, which is supported byBMBF grant 031A190. B.P.H. and J.A.D. were supported by the NASA Exobiology grant EXO-NNX11AR78GandNSFOISE 096842and B.P.H. by a generous contribution from G. Fullmer through the UNLV Foundation. S.M.S was supported by NSF grants OCE-0452333 and OCE-1136727, and the WHOI’s Andrew W. Mellon Fund for Innovative Research; and S.J.H. by the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund, the National Sciences and Engineering Research Council (NSERC) of Canada and the TULA foundation funded Centre for Microbial Diversity and Evolution (CMDE), and the Canadian Institute for Advanced Research (CIFAR). R.S. was supported by NSF grants DEB-841933, EF-826924, OCE-1232982, OCE-821374 and OCE-1136488, and the Deep Life I grant by the Alfred P. Sloan Foundation. P.H.was supported by a Discovery Outstanding Researcher Award (DORA) from the Australian Research Council, grant DP120103498.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: The work is made available under the Creative Commons CC0 public domain dedication. The definitive version was published in PLoS One 9 (2014): e95380, doi:10.1371/journal.pone.0095380.
    Description: Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.
    Description: This work was supported by NSF grants EF-826924 (R.S.), OCE-821374 (R.S.) and OCE-1232982 (R.S. and B.K.S.); the DOE JGI 2010 Microbes Program grant CSP77 (R.S. and M.E.S.); National Institutes of Health grant 1UH2DK083993 (H.G.M.). Work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The contributions of S.K. were funded under Agreement No. HSHQDC-07-C-00020 awarded by the Department of Homeland Security (DHS) for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-11
    Description: Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-08
    Description: The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...