GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (160 pages)
    Edition: 1st ed.
    ISBN: 9783319312484
    Series Statement: Advances in Experimental Medicine and Biology Series ; v.902
    DDC: 612
    Language: English
    Note: Intro -- Preface -- Contents -- 1: A Short Definition of Terms -- References -- 2: Studying the Human Microbiota -- 2.1 Introduction -- 2.2 Classical Microbiological Methods -- 2.2.1 Culture -- 2.2.2 Continuous Culture -- 2.2.3 Animal Models -- 2.3 Sequence-Based Approaches -- 2.3.1 Marker Gene Surveys -- 2.3.2 Whole Genome Sequencing -- 2.3.3 Metagenomics -- 2.3.4 Single-Cell Genomics -- 2.3.5 Metatranscriptomics -- 2.4 Common Pitfalls of Sequence Based Approaches -- 2.5 Other Community Profiling Approaches -- 2.5.1 Community Fingerprinting Techniques -- 2.5.2 Microarrays -- 2.6 Quantitative Approaches -- 2.6.1 Quantitative PCR -- 2.6.2 Fluorescent in situ Hybridisation (FISH) -- 2.7 Functional Analyses -- 2.7.1 Functional Metagenomics -- 2.7.2 Metaproteomics -- 2.7.3 Metabolomics -- 2.7.4 Stable Isotope Probing -- 2.8 Conclusions -- References -- 3: The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome -- 3.1 Introduction -- 3.2 Epigenetics - the Mediator Between the Genome and Physiology -- 3.3 Interaction of Bacterial Metabolites and the Host's Metabolic Regulation -- 3.4 Putative Targets of Bacterial Metabolites - in Time and Space -- 3.5 Health Implications - Sooner or Later -- References -- 4: The Oral Microbiota -- 4.1 Variety -- 4.2 Locations of the Oral Microbiota -- 4.3 Intra-oral Dislodging: Mutual Transfer -- 4.4 Inter-oral Transmission of Bacteria and Age-Related Microbiological Changes -- 4.5 Succession of the Oral Microbiota: Biofilm Formation -- 4.6 Phases of Biofilm Development -- 4.7 Dental Plaque: A Typical Biofilm -- 4.8 "Health-Disease-­Relationship" and Significance of Oral Flora for Systemic Health -- 4.9 Prospects -- 4.10 Summary -- References -- 5: The Microbiota of the Human Skin -- 5.1 Introduction. , 5.2 The Human Skin as a Habitat for Microorganisms -- 5.3 Structure and Variability of the Healthy Skin Microbiota -- 5.3.1 The "normal" Skin Microbiota of Healthy Adults -- 5.3.1.1 Bacteria -- 5.3.1.2 Fungi, Archaea and Viruses -- 5.3.2 Factors Shaping the Composition of the Skin Microbiota -- 5.4 Functional Aspects of the Human Skin Microbiota -- 5.4.1 Protective Functions of the Human Skin Microbiota -- 5.4.2 Role in Skin Disorders and Skin Diseases -- 5.5 Manipulation of the Human Skin Microbiota -- 5.6 Outlook: Trends and Challenges -- References -- 6: Vaginal Microbiota -- 6.1 A Historic Perpective -- 6.2 Normal Vaginal Microbiota -- 6.2.1 The Normal Vaginal Microbiota: A Mixture of Many Bacteria in a Balance -- 6.2.2 Gene Polymorphisms and Vaginal Immunity -- 6.3 Abnormal Vaginal Flora -- 6.3.1 Bacterial Vaginosis (BV) -- 6.3.2 Polymicrobial Bacterial Biofilms in BV and Sexual Transmission -- 6.3.3 Aerobic Vaginitis (AV) -- 6.4 Prophylaxis and Therapy with Probiotics -- 6.5 Summary and Conclusion -- References -- 7: The Human Gut Microbiota -- 7.1 Introduction -- 7.2 The Normal Microbiota -- 7.3 Gut Microbiota Development: The Young Microbiota -- 7.4 The Role of Gut Microbiota in Disease -- 7.4.1 IBD -- 7.5 Abberant Gut Microbiota Development and Type 1 Diabetes -- 7.6 Obesity and Metabolic Diseases -- 7.7 Concluding Remarks -- References -- 8: Manipulation of the Microbiota Using Probiotics -- 8.1 Introduction -- 8.2 Irritable Bowel Syndrome -- 8.3 Inflammatory Bowel Disease (IBD) -- 8.4 Atopy/Allergy -- 8.5 Necrotizing Enterocolitis -- 8.6 Diarrhoeal Diseases -- References -- 9: How to Manipulate the Microbiota: Prebiotics -- 9.1 Introduction -- 9.2 What Is a Prebiotic? -- 9.2.1 Are Gut Bacteria Either Beneficial or Detrimental for Health? -- 9.2.2 How Selective Are Prebiotics?. , 9.2.3 Should Prebiotic Effects Be Limited to Specific Species or Genera Within the Microbiota? -- 9.2.4 Might the Beneficial Effects of a Prebiotic Be Due to Microbiota Changes Other than Stimulation of Lactic Acid Bacteria? -- 9.2.5 Does Variation in Microbiota Responses Between Individuals Need to Be Considered? -- 9.2.6 Is Microbiota Diversity Itself an Indicator for Gut Health? -- 9.3 Mechanisms of Action of Microbiota Modulation by Prebiotics (Fig. 9.3) -- 9.4 Ingredients with Confirmed Prebiotic Action and Candidate Prebiotics -- 9.4.1 Fructans -- 9.4.2 Galactooligosaccharides -- 9.4.3 Resistant Starch, Starch- and Glucose-Derived Oligosaccharides -- 9.4.4 Other Oligosaccharides -- 9.4.5 Non-carbohydrate Compounds -- 9.5 Health Effects of Prebiotics on the Host -- 9.5.1 Physiological Effects and Underlying Mechanisms -- 9.5.1.1 Improvement of Intestinal Functions (Stool Bulking, Stool Regularity, Stool Consistency) -- 9.5.1.2 Stimulation of Mineral Absorption and Improvement of Bone Density -- 9.5.1.3 Regulation of Appetite and Stimulation of Gut Peptide Secretion -- 9.5.1.4 Improvement of Intestinal Barrier Integrity -- 9.5.1.5 Regulation of Lipid and Glucose Metabolism -- 9.5.1.6 Modulation of Immune Functions -- 9.5.2 Current Evidence for Disease Prevention or Treatment -- 9.6 Conclusions -- References -- 10: How to Manipulate the Microbiota: Fecal Microbiota Transplantation -- 10.1 Microbiota Transplantation: Concept and History -- 10.2 Applications -- 10.2.1 Clostridium difficile Infection -- 10.2.2 Inflammatory Bowel Disease -- 10.2.3 Other Applications -- 10.3 Methodology and Donor Selection -- 10.4 Synthetic Communities -- 10.5 Regulations and Safety -- 10.6 Microbiota Transplantation: The future -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words Human intestinal bacteria ; Flavonoid ; degradation ; Quercetin-3-glucoside ; Ring cleavage ; 3 ; 4-Dihydroxyphenylacetic acid ; Phloroglucinol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From human feces two phenotypically different types of bacteria were isolated on quercetin-3-glucoside as carbon and energy source. Isolates of one type were identified as strains of Enterococcus casseliflavus. They utilized the sugar moiety of the glycoside, but did not degrade the aglycon further. The sugar moiety (4 mM) was fermented to 5.5 ± 2.1 mM formate, 2.1 ± 0.7 mM acetate, 1.6 ± 0.3 mM l-lactate, and 1.3 ± 0.4 mM ethanol. The second type of isolate was identified as Eubacterium ramulus. This organism was capable of degrading the aromatic ring system. Growing cultures of Eubacterium ramulus converted 5 mM quercetin-3-glucoside to 1.7 ± 0.6 mM 3,4-dihydroxyphenylacetic acid, 7.6 ± 1.0 mM acetate, and 4.0 ± 0.4 mM butyrate. Molecular hydrogen, 3,4-dihydroxybenzaldehyde, and ethanol were detected in small amounts. Phloroglucinol was a transient intermediate in the breakdown of quercetin-3-glucoside. Eubacterium ramulus did not grow on the aglycon quercetin or the ring-fission intermediate phloroglucinol, but cleaved the flavonoid ring system when glucose was present as a cosubstrate. The most probable number of quercetin-3-glucoside-degrading bacteria determined in nine human fecal samples was 107–109/g dry mass. Isolates from these experiments were all identified as Eubacterium ramulus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...