GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 206 (1965), S. 272-275 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] CORPUS allatum transplantation and extirpation in insects cause many physiological responses which have been ably reviewed in recent years15. The interrelations among these various manifestations are not well understood; but the present biological evidence has failed to establish the necessity for ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 182 (1958), S. 491-493 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IN pupae of the Cecropia silkworm, Hyalophora cecropia, as in many other insects, most of the metabolic carbon dioxide is retained within the insect and released in bursts during brief periods when the spiracles are widely open, which may occur only three or four times each day1. Shortly after the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 177 (1956), S. 1169-1171 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE respiration of many groups of insects is remarkable in that metabolic carbon dioxide is retained within the insect and released during brief periods in 'bursts'1. In diapause pupae of the Cecropia silkworm, Platysamia cecropia, more than nine-tenths of the metabolic carbon dioxide is stored and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 188 (1960), S. 1041-1042 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] All these active extracts prevented certain tissues of young insects from assuming their adult aspect, but did not interfere with growth itself. In pup of Lepidoptera, Hemiptera and Coleoptera, local application of active extracts caused the pupal epidermal cells to lay down a second pupal cuticle ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 184 (1959), S. 171-173 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE juvenile hormone was first recognized as the agent which prevents maturation of young insects1. A second role for this hormone, discovered shortly thereafter, was in egg development where, in many insects, it is necessary for yolk deposition2. The present article describes what appears to be a ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 234 (1971), S. 187-194 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] WHEN Thomas Hunt Morgan left embryology for genetics he deserted Hydra, planaria, sea urchins and amphibia for Drosophila. The fruit fly was recognized, and still is recognized, as an ideal organism for the study of eukaryote genetics, but it now seems that it will turn out to be equally suitable ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 168 (1971), S. 1-9 
    ISSN: 1432-041X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leg and wing imaginal discs of mature larvae ofDrosophila melanogaster when treated with 0.1% trypsin for 5–10 min underwent a change in shape that closely resembled normal pupal morphogenesis. Simultaneously, the cells of the disc epithelium changed in shape from tall columnar to cuboidal. Colcemid eliminated microtubules but was without effect on the shape of the imaginal discs or their cells. Tryptic digestion reduced non-junctional intercellular adhesivity but septate desmosomes and gap junctions remained intact. It is proposed that the structure of imaginal discs permits the packaging of the anlagen of the adult integument so that they can change shape and replace the larval structures in a brief period. Apparently most of the definitive form of the pupal leg is built into the disc and becomes visible within a few minutes as intercellular adhesivity is changed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-041X
    Keywords: Drosophila ; Imaginal disc ; Histoblasts ; Adepithelial cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Histological analyses were made of imaginal discs and histoblasts during the larval development ofDrosophila melanogaster to determine the number of cells, the patterns of cell division and the growth dynamics in these adult primordia. Histological studies were also made of the imaginal rings which are the primordia of the adult salivary gland, fore-and hindgut, the anlage cells of the midgut and several larval and embryonic tissues. 2. In the newly-hatched larva, the immature eye-antenna, wing, haltere, leg and genital discs contain about 70, 38, 20, 36–45 and 64 cells respectively. These numbers include cells destined to form cuticular elements as well as peripodial, tracheal and nerve cells and probably the progenitors of adepithelial cells. The number of cells counted in the various imaginal disc anlagen is 1.5 to 4 times higher than the numbers deduced from genetic mosaic analyses by other investigators and reasons for these differences are given. 3. About 12 h after fertilization, mitosis ceases in all tissues of the embryo except the nervous system. After the larva hatches, mitosis resumes in most of the imaginal anlagen and in some larval tissues. The time of resumption of mitosis in the imaginal anlagen was determined after treating the larvae with colchicine for 2 h. 4. Among the imaginal discs, the eye disc is the first to begin cell division, at about 13–15 h after the hatching of the larva (first instar) followed by the wing (15–17 h), the haltere (18–20 h), the antenna, leg, and genitalia (24–26 h, early second instar), and finally the labial and dorsal prothoracic discs (52–54 h, early third instar). The cell doubling time for various discs was calculated from cell counts and the times agree closely with the doubling times deduced from clonal analyses by other workers: e.g., 7.5 h for the cells of the wing disc. 5. The imaginal ring of the hindgut first shows cell division early in the second instar. The imaginal rings of the foregut and salivary glands, the anlage cells of the midgut and the cells of the segmental lateral tracheal branches begin to divide early in the third instar. 6. The histoblasts which are the anlagen of the integument of the adult abdomen do not increase in number from the time of larval hatching until about 5 h after pupation when they begin to divide. Their behaviour contrasts with that of the histoblasts of the other dipterans such asCalliphora, Musca andDacus, which begin to divide during the second instar. 7. The histoblasts are an integral part of the larval abdominal epidermis and, unlike imaginal disc cells, secrete cuticle during larval life. Each hemisegment consists of an anterior dorsal, a posterior dorsal, and a ventral histoblast nest containing about 13, 6 and 12 cells respectively. The 62 histoblasts in each larval segment represent about 7–8% of the total number of cells that form the integument of that segment. 8. The number of cells in a particular type of histoblast nest was constant for both male and female larvae and among the different abdominal segments, except that the anterior dorsal group of the first and the seventh segments contains fewer cells than those of the other segments. Although the male and female adultDrosophila lack the first abdominal sternite and the male lacks the seventh abdominal tergite and sternite, the ventral histoblast nests of the first and the dorsal and ventral nests of the seventh abdominal segments are present in the larval stages as well as in the prepupa and have the same morphology and cell number as similar nests in the rest of the abdominal segments. 9. The cells of the imaginal discs increase in volume about six-fold and their nuclei increase in volume three-fold between the time of hatching and the initiation of mitosis. The histoblasts increase in volume about 60-fold and their nuclei increase in volume about 25-fold between larval hatching and pupariation. 10. Prior to each cell division, the nuclei of the columnar cells of the disc epithelium and of the histoblasts appear to migrate toward the apical surface of the epithelium. The cells round up and shift toward the apical region where mitosis occurs. After cytokinesis, the daughter cells move back to deeper positions in the epithelium. Because the nuclei of the non-dividing cells continue to lie deep in the epithelium, this intermitotic migration of nuclei gives these epithelia a pseudostratified appearance. 11. Analyses of the growth of larval cells and of organs confirmed the observations of earlier investigators that cell division occurs only in a few larval tissues, whereas growth in the rest of the larval tissues is by cell enlargement and polyteny. During larval life, cell division was detected only in the central nervous system, gonads, prothoracic glands, lymph glands and haemocytes. Each tissue began mitosis at a characteristic stage in larval life. The larval cells that did not divide, grew enormously, e.g., epidermal cells increased in volume 150-fold and their nuclei increased in volume 80-fold. 12. The adepithelial cells, which give rise to some of the imaginal muscles, were first identified between the thick side of the imaginal dise epithelium and the basement membrane at the beginning of the third larval instar (50–52 h). The origin of these precursors of mesodermal structures was analysed and evidence is presented that the adepithelial cells come from the disc epithelium. The question of the origin of the mesoderm of cyclorrhaphan Diptera is reviewed and it is suggested that the imaginal disc ectoderm may become segregated from the rest of the embryo before gastrulation has occurred, that is before the mesoderm has been established.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 186 (1979), S. 235-265 
    ISSN: 1432-041X
    Keywords: Regulation ; Histoblasts ; Drosophila ; Microcautery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The development of the adult abdomen ofDrosophila melanogaster was analyzed by histology, microcautery, and genetic strategies. Eight nests of diploid histoblasts were identified in the newly hatched larva among the polytene epidermal cells of each abdominal segment: pairs of anterior dorsal, posterior dorsal, and ventral histoblast nests and a pair of spiracular anlagen. The histoblasts do not divide during larval life but begin dividing rapidly 3 h after pupariation, doubling every 3.6 h. Initially they remain confined to their original area, but 15 h after pupariation the nests enlarge, and histoblasts replace adjacent epidermis cell by cell. The histoblasts cover half the abdomen by 28 h after pupariation and the rest by 36 h. Polytene epidermal cells of the intersegmental margin are replaced last. Cautery of the anterior dorsal nest caused deletion of the whole corresponding hemitergite, whereas cautery of the posterior dorsal nest caused the deletion of the macrochaetae of the posterior of the hemitergite. Cautery of the ventral nest deleted the hemisternite and the pleura, whereas cautery of the spiracular anlagen deleted the spiracle. Results of cautery also revealed that no macrochaetae formed on the tergite in the absence of adjacent microchaetae. Clonal analysis revealed that there were no clonal restrictions within a hemitergite at pupariation. Cautery of polytene epidermal cells other than those of the intersegmental margin failed to affect tergite development. However, cautery of polytene epidermal cells of the intersegmental margin adjacent to either dorsal histoblast nest caused mirror-image duplications of the anterior or posterior of the hemitergite in 10% of the hemitergites. Forty percent of the damaged presumptive hemitergites formed complete hemitergites, indicating extensive pattern regulation and regeneration. Pattern duplication and regeneration were accounted for in terms of intercalation and a model of epimorphic pattern regulation (French et al., 1976). Histoblasts in adjacent segments normally develop independently, but if they are enabled to interact by deleting the polytene epidermal cells of the intersegmental margin, they undergo intercalation which results in duplication or regeneration. The possible role of the intersegmental margin cells of insects in development was analyzed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 166 (1970), S. 1-44 
    ISSN: 1432-041X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Die Feinstrukturen der Imaginalscheiben, der embryonalen, larvalen, pupalen und adulten Epidermis, alles chitinbildende Gewebe, wurden untersucht und miteinander verglichen. Besondere Aufmerksamkeit legten wir auf ultrastrukturelle Merkmale, die mit spezifischen morphogenetischen Vorgängen korreliert sein können. Frühere Untersuchungen über die Morphologie der Imaginalscheiben bei Dipteren wurden kritisch analysiert und führten mit unseren Resultaten zu einem etwas veränderten Bild der Scheibenstruktur. Die Imaginalscheiben vonDrosophila melanogaster bestehen aus drei Zelltypen: Zellen des einschichtigen Epithels, adepitheliale Zellen und Nerven. Die Epithelzellen weisen vier spezialisierte Zellverbindungen auf: „zonulae adherens“, „septate desmosomes“, „gap junctions“ und zytoplasmatische Brücken. Die Funktion dieser Zellverbindungen wird im Zusammenhang mit der Zelladhäsion und Zellkommunikation diskutiert. Es scheint, daß während der Musterbildung, die „gap junctions“, eher als die „septate desmosomes“, die Orte der Zellkommunikation sind. Wir haben gezeigt, daß adepitheliale Zellen Vorläufer der imaginalen Muskeln sind. Einige atelotypische Linien, die sich als Kulturen adepithelialer Zellen erwiesen, differenzieren Muskeln. Die Imaginalscheiben können leicht an ihrer Gesamtmorphologie, d.h. an ihrem Faltenmuster erkannt werden. Ultrastrukturelle Merkmale wurden jedoch nicht beobachtet, die mit dem Determinationszustand der Zelle korrelierbar wären. Während der Entwicklung sind die meisten Unterschiede in der Feinstruktur auf verschiedene Phasen der Kutikulasekretion zurückzuführen. Die Epithelzellen der Imaginalscheiben zeigen viele Ribosomen, besitzen aber nur sehr wenig endoplasmatisches Reticulum. Dieses nimmt erst bei der Pupariumbildung stark zu. 4–6 Std nach Puparisierung ist Kutikulin nachweisbar und nach 6 Std scheiden die Epithelzellen die Epikutikula aus. Während sich die Beinscheibe vom gefalteten Sack zum röhrenförmigen Bein ausstülpt, werden die länglichen Epithelzellen kubisch. Gleichzeitig mit dieser Formänderung verschwinden die Microtubuli in der Längsachse der Zellen. Die Morphogenese des Beines im Vorpuppenstadium scheint auf eine Änderung der Zellform zu beruhen. Früher beschriebene Erklärungen für den Mechanismus der Ausstülpung sind mit unseren Beobachtungen nicht vereinbar. Autophagozytose und gelegentlich Heterophagozytose einer toten Nachbarzelle konnten in den Epithelzellen nachgewiesen werden. Dies scheint jedoch kein wesentlicher Faktor für die Morphogenese der Scheibe zu sein. Pflanzenperoxydase, als Tracer-Protein im Blut, wird vom Scheibenepithel aus der Hämolymphe aufgenommen. Scheibenzellen enthalten viele Lipidtröpfchen, die sich vereinigen und während des Vorpuppenstadiums durch Glycogen ersetzt werden.
    Notes: Summary The ultrastructure of the imaginal discs ofDrosophila melanogaster was compared with that of other chitogenous tissues with different developmental capacities, namely, embryonic, larval, pupal and adult epidermis. Attention was paid to features which might be correlated with specific morphogenetic activities. Previous morphological studies of imaginal discs of Diptera were analyzed in detail and a somewhat revised view of imaginal disc structure emerged. The results reveal that the imaginal discs ofD. melanogaster consist of three types of cells: cells of the single layered disc epithelium, adepithelial cells and nerves. Four types of specialized junctions connect the cells of the disc epithelium: zonulae adhaerens, septate desmosomes, gap junctions and cytoplasmic bridges. The junctions are discussed in relation to their possible roles in adhesion and intercellular communication. It was concluded that gap junctions may be a more likely site for the intercellular communication involved in pattern formation than septate desmosomes. Evidence is presented that adepithelial cells are the precursors of imaginal muscles and that some cell lines (atelotypic) are in fact lines of adepithelial cells which can differentiate into muscle. Specific imaginal discs can be easily recognized by their overall morphology, i.e. patterns of folds. However, no ultrastructural features were found which we could correlate with the state of determination of the cells. Most differences in the ultrastructure of different discs at several developmental stages were attributable to different phases of cuticle secretion. The cells of the imaginal disc epithelium are packed with ribosomes but very little rough ER. The amount of rough ER increases rapidly at puparium formation. Cuticulin is recognizable 4–6 hours after puparium formation. Six hours after puparium formation, the cells of the disc epithelium are secreting the epicuticle of the pupa. As the imaginal disc of a leg everts from a folded sac to the tubular pupal leg, the cells of the disc epithelium change from tall columnar to cuboidal. A loss of microtubules in the long axis of the columnar cells accompanies this change. Prepupal morphogenesis of the leg appears to be caused by the change in cell shape. Evidence is presented which is incompatible with previous explanations of the mechanism of eversion of imaginal discs. There is some turnover of the cells of the disc epithelium as evidenced by autophagy and the occasional heterophagy of a dead neighbor. However this does not appear to be an important factor in the morphogenesis of discs. Plant peroxidase which was used as a tracer of proteins in the blood was taken up from the hemolymph by the disc epithelium. Imaginal disc cells contain many lipid droplets which coalesce and are replaced by glycogen during the prepupal period.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...