GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1435-1285
    Keywords: Key words Acute/adult respiratory distress syndrome –¶pulmonary hypertension –¶inhalative therapy –¶sepsis-nitric oxide – prostacyclin– ARDS and pulmonary hypertension – new aspects of the inhalative therapy ; Schlüsselwörter Acute/adult respiratory distress syndrome –¶Pulmonale Hypertonie –¶inhalative Therapie –¶Sepsis-Stickstoffmonoxid –¶Prostazyklin –¶ARDS und pulmonale Hypertonie – Neue Aspekte der inhalativen Therapie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Die chronische pulmonale Hypertonie und das septische Lungenversagen (ARDS) sind Krankheiten mit völlig unterschiedlichen Auslösern, die zu einer Störung der transpulmonalen Blutströmung führen. Die Beeinträchtigung der Hämodynamik im kleinen Kreislauf beruht auf einer pathologischen Gefäßverengung, die sowohl eine Überlastung des rechten Ventrikels als auch eine gravierende Störung des Gasaustausches durch Perfusionsfehlverteilungen verursachen kann. Die unterschiedlichen auf die Vaskularisation einwirkenden Schädigungsmechanismen können dabei sowohl eine irreversible als auch eine reversible Verengung der Lungengefäße bewirken. Prinzipiell bestehen drei Möglichkeiten durch pharmakologische Intervention die Widerstandserhöhung zu beeinflussen: • Aufhebung eines dauerhaft erhöhten Vasotonus durch Relaxation der glatten Gefäßmuskulatur (Angriffspunkt der Vasodilatatoren). • Beeinflussung einer thrombusbedingten Obliteration der Lungenstrombahn (Embolie, in situ Thrombose) durch Antikoagulanzien oder Fibrinolitika (nur im Akutstadium). • Beeinflussung des strukturellen Gefäßumbaus (vaskuläres Remodelling) durch Einsatz von antiinflammatorischen und antiproliferativen Agenzien bei der chronischen pulmonalen Hypertonie. Die systemische (intravenöse, oder orale) Gabe von vasodilatativen Agenzien ist sowohl bei der Sepsis als auch bei der chronischen pulmonalen Hypertonie mit erheblichen Nachteilen behaftet: • Antagonisierung der hypoxischen pulmonalen Vaskonstriktion und damit Zunahme der Ventilations-Perfusions-Verteilungsstörung (Abfall der arteriellen Oxygenierung). • Unerwünschte systemische Effekte der Vasodilatatoren (Verstärkung der meist vorbestehenden systemischen Hypotension). Der wesentliche Vorteil des inhalativen Applikationsmodus ist die pulmonale Anreicherung der Agenzien (pulmonale Selektivität) mit bevorzugter Deposition gerade in den gut belüfteten Alveolarbezirken (intrapulmonale Selektivität). Die erwünschte Abnahme des pulmonal-vaskulären Widerstandes ist so gleichzeitig mit einer Optimierung der intrapulmonalen Perfusionsverteilung und einer Verbesserung des Gasaustausches verbunden. Erste positive Erfahrungen mit dieser Vorgehensweise wurden bei beatmeten Patienten mit septischem Lungenversagen unter Einsatz von inhaliertem NO und aerosoliertem Prostazyklin gewonnen. Der Einsatz des stabilen Prostazyklinanalogons Iloprost (Ilomedin) ermöglichte aufgrund der längeren Halbwertszeit der Substanz einen intermittierenden Inhalationsmodus und so eine ambulante Selbstbehandlung von Patienten mit chronischer pulmonaler Hypertonie.
    Notes: Summary Chronic pulmonary hypertension and septic lung failure display different clinical features resulting in severe disturbances in the pulmonary circulation. In these diseases, the pulmonary bloodflow is impaired by a pathologic constriction of blood vessels that may lead to right ventricular overloading as well as serious worsening of gas exchange mainly caused by ventilation/perfusion mismatch. Various mechanisms deteriorating the vascular function may induce both an irreversible and a reversible contraction of pulmonary vessels, respectively. Two pharmacological approaches exist to reduce the vascular resistance: • Reduction of the increased vascular tone by relaxation of vascular smooth muscle cells (effect of vasodilators). • Inhibition of thrombus-mediated obliteration of the lung perfusion by use of anti-coagulatory and fibrinolytic drugs. • Prevention of the structural reorganization of pulmonary vessels (vascular remodeling) by use of vasodilators with anti-inflammatory and anti-proliferative potency such as prostanoids. The systemic (intravenous or oral) application of vasodilative agents in sepsis and chronic pulmonary hypertension has, however, important side effects: • Antagonism of the hypoxic pulmonary vasoconstriction aggravates the ventilation/perfusion mismatch (decrease in arterial oxygenation). • Side effects of these vasodilators (systemic hypotension). The inhalative route of application is superior because of the pulmonary enrichment of the applied agent (pulmonary selectivity). Furthermore, a preferential deposition in the well-ventilated areas of the lung is achieved (intrapulmonary selectivity). Thus, the decrease in pulmonary-vascular resistance is paralleled by both optimized ventilation-perfusion matching and subsequently improved gas exchange. First clinical studies with inhaled nitric oxide and aerosolized prostacyclin have been performed in intubated and mechanically ventilated patients with septic lung failure. At present, the use of the long-acting prostacyclin analogue ilomedin for ambulant treatment of patients with chronic pulmonary hypertension is under investigation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-23
    Description: JmjC domain-containing proteins play a crucial role in the control of gene expression by acting as protein hydroxylases or demethylases, thereby controlling histone methylation or splicing. Here, we demonstrate that silencing of Jumonji domain-containing protein 6 (Jmjd6) impairs angiogenic functions of endothelial cells by changing the gene expression and modulating the splicing of the VEGF-receptor 1 (Flt1). Reduction of Jmjd6 expression altered splicing of Flt1 and increased the levels of the soluble form of Flt1, which binds to VEGF and placental growth factor (PlGF) and thereby inhibits angiogenesis. Saturating VEGF or PlGF or neutralizing antibodies directed against soluble Flt1 rescued the angiogenic defects induced by Jmjd6 silencing. Jmjd6 interacts with the splicing factors U2AF65 that binds to Flt1 mRNA. In conclusion, Jmjd6 regulates the splicing of Flt1, thereby controlling angiogenic sprouting.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-17
    Keywords: Other Vascular biology
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-14
    Description: Formation of abdominal aortic aneurysms is a progressive inflammatory process that involves infiltration and differentiation of monocytes in the vessel wall, proliferation and migration of smooth muscle cells, and eventually the degradation of the internal elastic lamina, which leads to outward vascular remodeling and distension of the vessel. Because calcium channel blockers exert multiple beneficial effects on the vascular system, we investigated the effect of the benzothiazepine-type calcium channel blocker diltiazem on aneurysm formation in a mouse model. Angiotensin II infusion induced massive suprarenal aortic aneurysm formation in male apolipoprotein E – deficient mice that was blocked by cotreatment with diltiazem even if the blood pressure was controlled by coinfusion of phenylephrine. Diltiazem prevented the angiotensin II–mediated induction of proinflammatory cytokines after 7 days of angiotensin II treatment in the aortic arch attributable to a reduction in the amount of locally infiltrating macrophages. To identify the underlying mechanism, vascular segments and cultured vascular cells as well as monocytes were studied. Diltiazem failed to reduce the angiotensin II–induced expression of proinflammatory chemokines and cytokines in isolated mouse thoracic aortic segments in organ culture. Furthermore, diltiazem did not affect the recruitment of proinflammatory Ly6C + monocytes in vivo pointing toward an effect of the compound on gene expression in monocytes/macrophages. Indeed, diltiazem prevented the interleukin-6–induced mRNA expression of interleukin-1β and the monocyte chemoattractant protein CCL12 in peritoneal macrophages and RAW264.7 cells independent of the intracellular calcium concentration. Thus, diltiazem limits aortic aneurysm formation in mice by a blood pressure–independent anti-inflammatory effect on monocytic cells.
    Print ISSN: 0194-911X
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-13
    Description: Objective— Mutations in the bone morphogenetic protein type II receptor (BMPR-II) are responsible for the majority of cases of heritable pulmonary arterial hypertension (PAH), and BMPR-II deficiency contributes to idiopathic and experimental forms of PAH. Sildenafil, a potent type-5 nucleotide-dependent phosphodiesterase inhibitor, is an established treatment for PAH, but whether sildenafil affects bone morphogenetic protein (BMP) signaling in the pulmonary circulation remains unknown. Methods and Results— Studies were undertaken in human pulmonary arterial smooth muscle cells (PASMCs) and in vivo in the monocrotaline rat model of PAH. In PASMCs, sildenafil enhanced BMP4-induced phosphorylation of Smad1/5, Smad nuclear localization, and Inhibitor of DNA binding protein 1 gene and protein expression. This effect was mimicked by 8-bromo-cyclic GMP. Pharmacological inhibition or small interfering RNA knockdown of cyclic GMP-dependent protein kinase I inhibited the effect of sildenafil on BMP signaling. In functional studies, we observed that sildenafil potentiated the antiproliferative effects of BMP4 on PASMC proliferation. Furthermore, sildenafil restored the antiproliferative response to BMP4 in PASMCs harboring mutations in BMPR-II. In the monocrotaline rat model of PAH, which is characterized by BMPR-II deficiency, sildenafil prevented the development of pulmonary hypertension and vascular remodeling, and partly restored Smad1/5 phosphorylation and Inhibitor of DNA binding protein 1 gene expression in vivo in monocrotaline exposed rat lungs. Conclusion— Sildenafil enhances canonical BMP signaling via cyclic GMP and cyclic GMP-dependent protein kinase I in vitro and in vivo, and partly restores deficient BMP signaling in BMPR-II mutant PASMCs. Our findings demonstrate a novel mechanism of action of sildenafil in the treatment of PAH and suggest that targeting BMP signaling may be beneficial in this disease.
    Keywords: Pulmonary circulation and disease
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-05
    Description: Objective— Pulmonary arterial hypertension is a progressive pulmonary vascular disorder with high morbidity and mortality. Compelling evidence suggests that receptor tyrosine kinases, such as platelet-derived growth factor (PDGF) are closely involved in the pathogenesis of pulmonary arterial hypertension. We investigated the effects of 2 novel PDGF inhibitors, nilotinib/AMN107 (Abl kinases/PDGF receptor inhibitor) and dasatinib/BMS-354825 (Abl kinases/PDGF receptor/Src inhibitor), on the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and on the hemodynamics and pulmonary vascular remodeling in experimental pulmonary hypertension, and determined the expression and regulation of Src family kinases. Methods and Results— Human PASMCs were stimulated by PDGF alone or multiple growth factors to induce proliferation and migration in vitro. Dasatinib (0.03 μmol/L), nilotinib (0.3 μmol/L), and imatinib (1 μmol/L) potently inhibited PDGF-induced signal transducer and activator of transcription 3 and Akt phosphorylation. All 3 inhibitors decreased PDGF-induced proliferation, cell cycle gene regulation, and migration. In contrast, only dasatinib inhibited multiple growth factor–induced PASMC proliferation, and this was associated with the inhibition of Src phosphorylation. Combination of specific Src inhibitors (phosphoprotein phosphatase 1, phosphoprotein phosphatase 2) with either imatinib or nilotinib reduced multiple growth factor–induced proliferation to a similar extent as dasatinib. Importantly, Src phosphorylation increased in pulmonary arterial hypertension PASMCs compared with control PASMCs. Finally, in vivo dasatinib (15 mg/kg per body weight) treatment caused a complete reversal of pulmonary vascular remodeling and achieved similar effectiveness as imatinib (100 mg/kg per body weight) in both monocrotaline- and hypoxia-induced pulmonary hypertension models. Conclusion— We suggest that dual inhibition of PDGF receptor and Src kinases potently inhibits mitogenic and motogenic responses to growth factors in PASMCs and pulmonary vascular remodeling in vivo so that dual inhibition may represent an alternative therapeutic approach for pulmonary arterial hypertension.
    Keywords: Remodeling, Animal models of human disease, Smooth muscle proliferation and differentiation, Pulmonary circulation and disease, Mechanism of atherosclerosis/growth factors
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-23
    Description: Aims Pulmonary hypertension is a progressive disease with poor prognosis, characterized by pathological inward remodelling and loss of patency of the lung vasculature. The right ventricle is co-affected by pulmonary hypertension, which triggers events such as hypoxia and/or increased mechanical load. Initially the right ventricle responds with ‘adaptive’ hypertrophy, which is often rapidly followed by ‘maladaptive’ changes leading to right heart decompensation and failure, which is the ultimate cause of death. Methods and results We report here that miR-223 is expressed in the murine lung and right ventricle at higher levels than in the left ventricle. Moreover, lung and right-ventricular miR-223 levels were markedly down-regulated by hypoxia. Correspondingly, increasing right-ventricular load by pulmonary artery banding, induced right-ventricular ischaemia, and the down-regulation of miR-223. Lung and right ventricle miR-223 down-regulation were linked with increased expression of the miR-223 target; insulin-like growth factor-I receptor (IGF-IR) and IGF-I downstream signalling. Similarly, miR-223 was decreased and IGF-IR increased in human pulmonary hypertension. Notably in young mice, miR-223 overexpression, the genetic inactivation or pharmacological inhibition of IGF-IR, all attenuated right-ventricular hypertrophy and improved right heart function under conditions of hypoxia or increased afterload. Conclusion These findings highlight the early role of pulmonary and right-ventricular miR-223 and the IGF-IR in the right heart failure programme initiated by pulmonary hypoxia and increased mechanical load and may lead to the development of novel therapeutic strategies that target the development of PH and right heart failure.
    Print ISSN: 0008-6363
    Electronic ISSN: 1755-3245
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-08
    Description: Pulmonary arterial hypertension (PAH) is a progressive, usually fatal disease with abnormal vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) from PAH patients are hyperproliferative and apoptosis-resistant and demonstrate decreased signaling in response to bone morphogenetic proteins (BMPs). Cyclic GMP-elevating agents are beneficial in PAH, but their mechanism(s) of action are incompletely understood. Here we show that BMP signaling via Smad1/5/8 requires cGMP-dependent protein kinase isotype I (PKGI) to maintain PASMCs in a differentiated, low proliferative state. BMP cooperation with cGMP/PKGI was crucial for transcription of contractile genes and suppression of pro-proliferative and anti-apoptotic genes. Lungs from mice with low or absent PKGI (Prkg1+/− and Prkg1−/− mice) exhibited impaired BMP signaling, decreased contractile gene expression, and abnormal vascular remodeling. Conversely, cGMP stimulation of PKGI restored defective BMP signaling in rats with hypoxia-induced PAH, consistent with cGMP-elevating agents reversing vascular remodeling in this PAH model. Our results provide a mechanism for the therapeutic effects of cGMP-elevating agents in PAH and suggest that combining them with BMP mimetics may provide a novel, disease-modifying approach to PAH therapy.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-08
    Description: Background— Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling and increased pulmonary vascular resistance. Chronic alveolar hypoxia in animals is often used to decipher pathways being regulated in PH. Here, we aimed to investigate whether chronic hypoxia–induced PH in mice can be reversed by reoxygenation and whether possible regression can be used to identify pathways activated during the reversal and development of PH by genome-wide screening. Methods and Results— Mice exposed to chronic hypoxia (21 days, 10% O 2 ) were reoxygenated for up to 42 days. Full reversal of PH during reoxygenation was evident by normalized right ventricular pressure, right heart hypertrophy, and muscularization of small pulmonary vessels. Microarray analysis from these mice revealed s-adenosylmethionine decarboxylase 1 (AMD-1) as one of the most downregulated genes. In situ hybridization localized AMD-1 in pulmonary vessels. AMD-1 silencing decreased the proliferation of pulmonary arterial smooth muscle cells and diminished phospholipase C1 phosphorylation. Compared with the respective controls, AMD-1 depletion by heterozygous in vivo knockout or pharmacological inhibition attenuated PH during chronic hypoxia. A detailed molecular approach including promoter analysis showed that AMD-1 could be regulated by early growth response 1, transcription factor, as a consequence of epidermal growth factor stimulation. Key findings from the animal model were confirmed in human idiopathic pulmonary arterial hypertension. Conclusions— Our study indicates that genome-wide screening in mice from a PH model in which full reversal of PH occurs can be useful to identify potential key candidates for the reversal and development of PH. Targeting AMD-1 may represent a promising strategy for PH therapy.
    Keywords: Remodeling, Cardiovascular Pharmacology, Animal models of human disease, Other hypertension, Other Treatment
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-14
    Keywords: Other hypertension
    Print ISSN: 0194-911X
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...