GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0867
    Keywords: slope hydrology ; interflow ; slope deposits ; pedology ; geoecosystem research
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The spring catchment under study is underlain by shale, on which several layers of slope sediments (cover-beds) are deposited. The upper of these layers contain eolian fines mixed into shale-derived debris, which latter material entirely comprises the basal cover-bed. Due to its dislocation by solifluction, the shale debris has a tegular structure. This leads to hydraulic anisotropy, particularly where no fine earth occurs. Thus, water that seeps into such material is forced to flow laterally while vertical movement is impeded. The basal cover-bed therefore hosts a deep aquifer. Only during major discharge events, excess hydrostatic pressure makes water flow into upper parts of the soils, being mixed with surficially interflowing water. Most of the time, however, there are two levels of water flow at different depths with different dwelling times, which finding is supported by probably geogenic sulphur isotopes in the deeply flowing water that are different from precipitation water. Kurzfassung Das bearbeitete Quelleinzugsgebiet liegt in Tonschiefer, welcher mit Deckschichten bedeckt ist. In die oberen Deckschichten wurde Löß eingearbeitet, während die untere ausschließlich aus umgelagertem Anstehenden besteht. Dieses Material wurde solifluidal verlagert und dabei mit einer dachziegelartigen Struktur abgelagert. Diese führt zu hydraulischer Anisotropie besonders in feinerdearmen Schichten. Wasser, das darin einsickert, fließt bevorzugt lateral, während vertikale Bewegungen stark behindert werden. Deshalb ist in der Basislage ein tieferes Aquifer entstanden. Während ausgeprägter Abflußereignisse wird der Überdruck darin jedoch so groß, daß es zu einem Aufpressen des Wasser in hangende Schichten und dort zur Vermischung mit höherem Zwischenabfluß kommt. Zumeist aber gibt es zwei unterschiedliche Interflow-Stockwerke in verschiedenen Tiefen. Dies wird bestätigt durch eine wahrscheinlich geogene Sulfatbeimischung im tieferen Stockwerk, die sich vom Niederschlagswasser in den Isotopen unterscheidet.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hiller, Rebecca V; Bretscher, Daniel; DelSontro, Tonya; Diem, Torsten; Eugster, Werner; Henneberger, Ruth; Hobi, Silas; Hodson, Elke; Imer, Dennis; Kreuzer, Michael; Künzle, Thomas; Merbold, Lutz; Niklaus, Pascal A; Rihm, Beat; Schellenberger, Andreas; Schroth, Martin H; Schubert, Carsten J; Siegrist, Hansruedi; Stieger, Jacqueline; Buchmann, N; Brunner, Dominik (2014): Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory. Biogeosciences, 11(7), 1941-1959, https://doi.org/10.5194/bg-11-1941-2014
    Publication Date: 2023-09-02
    Description: We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.
    Keywords: Switzerland
    Type: Dataset
    Format: application/x-netcdf, 23.8 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-13
    Description: Remote Sensing, Vol. 9, Pages 947: Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017 Remote Sensing doi: 10.3390/rs9090947 Authors: Tazio Strozzi Frank Paul Andreas Wiesmann Thomas Schellenberger Andreas Kääb We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011) and Sentinel-1 (2015–2017) data. In certain cases JERS-1 SAR (1994–1998), TerraSAR-X (2008–2012), Radarsat-2 (2009–2016) and ALOS-2 PALSAR-2 (2015–2016) data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2 Wide Ultra Fine) and ground-based measurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen) have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen). Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-27
    Description: Remote Sensing, Vol. 9, Pages 888: The 2015 Surge of Hispar Glacier in the Karakoram Remote Sensing doi: 10.3390/rs9090888 Authors: Frank Paul Tazio Strozzi Thomas Schellenberger Andreas Kääb The Karakoram mountain range is well known for its numerous surge-type glaciers of which several have recently surged or are still doing so. Analysis of multi-temporal satellite images and digital elevation models have revealed impressive details about the related changes (e.g., in glacier length, surface elevation and flow velocities) and considerably expanded the database of known surge-type glaciers. One glacier that has so far only been reported as impacted by surging tributaries, rather than surging itself, is the 50 km long main trunk of Hispar Glacier in the Hunza catchment. We here present the evolution of flow velocities and surface features from its 2015/16 surge as revealed from a dense time series of SAR and optical images along with an analysis of historic satellite images. We observed maximum flow velocities of up to 14 m d−1 (5 km a−1) in spring 2015, sudden drops in summer velocities, a second increase in winter 2015/16 and a total advance of the surge front of about 6 km. During a few months the surge front velocity was much higher (about 90 m d−1) than the maximum flow velocity. We assume that one of its northern tributary glaciers, Yutmaru, initiated the surge at the end of summer 2014 and that the variability in flow velocities was driven by changes in the basal hydrologic regime (Alaska-type surge). We further provide evidence that Hispar Glacier has surged before (around 1960) over a distance of about 10 km so that it can also be regarded as a surge-type glacier.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...