GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Aspergillus ; Glucose oxidase ; Catalase ; Lactonase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The induction of glucose oxidase, catalase, and lactonase activities was studied both in wild-type and in glucose oxidase regulatory and structural mutants of Aspergillus niger. The structural gene for glucose oxidase was isolated and used for Northern analysis and in transformation experiments using various gox mutations. Wild-type phenotype could be restored in the glucose oxidase-negative mutant (goxC) by transformation with the structural gene. We conclude, therefore, that the goxC marker which is located on chromosome 2 represents the structural gene of glucose oxidase. Glucose and a high oxygen level are necessary for the induction of all three enzyme activities in the wild-type strain and it was shown that both glucose and oxygen effects reflect regulation at the transcriptional level. The goxB mutation results in constitutive expression of all three activities although modulated to some extent by the carbon source. The goxE mutation only has an effect on lactonase and glucose oxidase expression and does not relieve the necessity for a high oxygen level. Catalase and lactonase could not be induced in the glucose oxidase-negative strain (goxC). Addition of H2O2 resulted in the induction of all three enzymes in the wild-type without glucose being present. The H2O2 induction is probably mediated by the goxB product. Besides the H2O2 induction there is still an effect of the carbon source on the induction. A model for induction of glucose oxidase, catalase, and lactonase in A. niger is discussed. Transformation of wild-type and goxC strains with the goxC gene resulted in only a 3–4 fold increase of glucose oxidase activity relative to the wild-type even though more than 25 copies of the structural gene were present. Transformation of the goxB strain gave higher activities but resulted in poor growth. Aspergillus nidulans does not have a glucose oxidase activity, but could be transformed with the A. niger goxC gene to a glucose oxidase-producing strain. Induction in these transformants was comparable to that in A. niger with respect to the carbon source dependency, but there was no oxygen dependencey of induction. The glucose oxidase produced by the A. nidulans transformants was kinetically indistinguishable from the A. niger enzyme, but it showed small differences in glycosylation pattern.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Yeast ; Ribosomal protein gene ; Sequence analysis ; Northern blot
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Sequence analysis revealed that a gene coding for yeast ribosomal protein L34 comprises an amino acid coding region of 339 nucleotides which is interrupted by an intron after the 19th codon. Like for other yeast ribosomal protein genes analyzed thus far a strong codon bias was observed. The flanking and intervening sequences of this gene encoding L34 show several elements that are conserved in a number of split ribosomal protein genes in yeast. Northern blot analysis using an intron-specific probe demonstrated that the sequenced gene copy coding for L34 is transcribed in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...