GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-26
    Description: Highlights • Glass inclusions record 11 Ma of early arc magma evolution. • Arc tholeiites succeed calc-alkalic magmas temporally. • Volcanic arc output directly linked to mantle wedge composition. • Dynamic slab control on arc magmatism following subduction initiation. Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu–Bonin–Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu–Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early ‘calc-alkalic’, high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the ‘calc-alkalic’ stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Magmas from continental arcs built on thick crust have elevated incompatible element abundances and “enriched” radiogenic isotope ratios compared to magmas erupted in island and continental arcs overlying thinner crust. The relative influence of the slab, mantle, and upper plate on this variability is heavily debated. The Andean Southern Volcanic Zone (SVZ; 33-46° S) is an ideal setting to investigate the production of enriched continental arc compositions, because both crustal thickness and magma chemistry vary coherently along strike. However, the scarcity of primitive magmas in the thick-crusted northern SVZ has hindered previous regional studies. To better address the origin of enriched continental compositions, we investigate the geochemistry (major and trace element abundances, 87Sr/86Sr and 143Nd/144Nd ratios) of new mafic samples from Don Casimiro and Maipo volcanoes in Diamante-Maipo Caldera Complex of the northern SVZ. While evolved Diamante-Maipo samples show evidence for crustal assimilation, the trace element and isotopic enrichment of the most mafic samples cannot result from crustal processing, as no known regional or global basement lithologies are enriched in all of the necessary incompatible trace elements. Subduction erosion models similarly fail to account for the enriched isotopic and trace element signature of these samples. Instead, we suggest that the enrichment of northern SVZ magmas is derived from an enriched ambient mantle component (similar to EM1-type ocean island basalts), superimposed on a northward decline in melt extent. A substantial, but nearly uniform contribution of melts from subducting sediment and altered oceanic crust are required at all latitudes. The EM1-like enrichment may arise from recycling of metasomatized subcontinental lithospheric mantle (M-SCLM), as the isotopic trajectory of primitive rear-arc monogenetic cones trend towards the compositions of SCLM melts sampled across South America. Isotopic data from spatially distributed rear-arc centres demonstrate that the arc-parallel variations in the degree of EM1-type enrichment observed in arc-front samples are also present up to 600 km behind the trench in the rear-arc. Rear-arc trace element systematics require significant but variable quantities of slab melts to be transported to the mantle wedge at these large trench distances. Overall, we show that a unified model incorporating variable mantle enrichment, slab additions, and melt extents can account for along and acrossarc trends within the SVZ. The recognition that mantle enrichment plays a key role in the production of enriched continental compositions in the SVZ has important implications for our understanding of the chemical evolution of the Earth. If ambient mantle enrichment is not taken into account, petrogenetic models of evolved lavas may overestimate the role of crustal assimilation, which, in turn, may lead models of continental crust growth to overestimate the amount of continental material that has been recycled back into the mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-17
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-08
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: IODP Expedition 351 Izu-Bonin-Mariana Arc Origins Postcruise Meeting, 06.-08.06.2016, Perth, Australia .
    Publication Date: 2017-05-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-08
    Description: Fine ash produced during volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. We analyse the particle size distributions, geochemistry and glass shard morphology of 19 distal (〉1000 km from source) volcanic ash deposits distributed across northern Europe, many geochemically linked to a specific volcanic eruption. The largest glass shards in the cryptotephra deposits were 250 µm (longest axis basis). For the first time, we examine the replicability and reliability of glass shard size measurements from peatland and lake archives. We identify no consistent trend in the vertical sorting of glass shards by size within lake and peat sediments. Measuring the sizes of 100 shards from the vertical sample of peak shard concentration is generally sufficient to ascertain the median shard size for a cryptotephra deposit. Lakes and peatlands in close proximity contain cryptotephras with significantly different median shard size in four out of five instances. The trend toward a greater amount of larger shards in lakes may have implications for the selection of distal sites to constrain the maximum glass shard size for modelling studies. Although the 95 th percentile values for shard size generally indicate a loss of larger shards from deposits at sites farther from the volcano, due to the dynamic nature of the controls on tephra transport even during the course of one eruption there is no simple relationship between median shard size and transport distance.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-30
    Description: Metamorphosed, vesuvianite-bearing dykes occur in serpentinised peridotites of the Raspas Complex (Ecuador), which represents a piece of oceanic lithosphere that has experienced high-pressure, subduction-related metamorphism. The serpentinite mantle protoliths are geochemically indistinguishable from modern oceanic lithosphere entering subduction zones. Positive Eu anomalies (Eu/Eu* = 1.3–7.2) and relative LREE enrichments (La N /Sm N = 1.2–5.5) point to hydrothermal alteration of the peridotite precursor rocks at or near the seafloor. Major mineral phases in the metamorphosed dykes include chlorite, diopside, amphibole and vesuvianite. In each dyke, only two of these phases – either amphibole + vesuvianite, diopside + chlorite, or amphibole + chlorite dominate the modal mineralogy with 〉~90 vol.%, suggesting metasomatic replacement at elevated P-T conditions during subduction, controlled by an external fluid. This fluid caused the decrease in coexisting mineral phases and overprinting of initial Sr isotope ratios (0.7025–0.7031). Preserved geochemical signatures from the dyke protoliths, including positive Eu anomalies (Eu/Eu* = 1.2–2.0) and Na enrichment due to spilitisation, reveal that the dykes originated as oceanic olivine gabbros and troctolites. Vesuvianite in the Raspas Complex formed by hydration and silica removal from gabbroic mineral assemblages during subduction. It has a wide stability in P-T space for hydrated and silica deficient bulk compositions so that it potentially represents a significant repository for the cycling of elements during subduction. In addition to Ca, Mg and Al, incorporation of significant amounts of Ti, Fe and Na (up to 2.4, 1.7 and 1.6 atoms per formula unit, respectively) in vesuvianite bears evidence for the potential of vesuvianite as petrogenetic indicator, although lack of relevant thermodynamic and experimental data precludes the extraction of quantitative information. For cold subduction zones in particular, vesuvianite appears to be able to carry significant amounts of water to mantle depths. Preferential incorporation of HREE (up to 2.2 ppm Yb), Sr (up to ~ 300 ppm) and Pb (up to 4.5 ppm) in vesuvianite underlines its potentially important role for the storage, transport and release of these key elements in radiogenic isotope geochemistry during subduction zone cycling.
    Print ISSN: 0935-1221
    Electronic ISSN: 1617-4011
    Topics: Geosciences
    Published by Schweizerbart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-05
    Description: The last Plinian-type eruption of Volcán de Colima, Mexico, occurred in 1913; this resulted in the removal of the top 100 m of the edifice and the deposition of a tephra layer that blanketed the slopes of the Colima Volcanic Complex (CVC). Road-cuts on the flanks of the nearby Nevado de Colima edifice expose pre-1913 air-fall tephra, pyroclastic flow and ash-rich surge deposits resulting from numerous highly explosive events throughout the Holocene. The majority of the pumice and scoria fallout deposits are medium-K subalkaline basaltic andesite and andesite in composition, defining a clear major element differentiation trend. In contrast, three newly discovered scoria fallout deposits are high-K subalkaline, transitional to alkaline, basaltic andesite in composition and are characterized by the presence of phlogopite; these deposits have high MgO (up to 7·9 wt %), K 2 O (up to 2·6 wt %) and P 2 O 5 (up to 0·67 wt %) contents. They are also strongly enriched in fluid- and melt-mobile large ion lithophile elements (LILE; Rb, Ba, K, Sr and Th) and light REE (LREE; La, Ce, Pr and Nd) relative to the majority of the Colima tephra fallout deposits. Strontium and Nd isotope systematics reveal that the high-K mafic scoria have more radiogenic Sr ( 87 Sr/ 86 Sr = 0·70365–0·70408) and less radiogenic Nd ( 143 Nd/ 144 Nd = 0·51279–0·51294) compared with the majority of the subalkaline tephras ( 87 Sr/ 86 Sr = 0·70338–0·70371 and 143 Nd/ 144 Nd = 0·51290–0·51295). Two-component mixing models, using whole-rock geochemical data, indicate the importance of magma mixing in the petrogenesis of the Colima magmas, with addition of up to 50% by volume of an alkaline mafic magma component in the most potassic magmas. This is supported by mineral chemistry and textural data, which reveal multiple episodes of decompression and magma mingling within a shallow crustal magma storage region. The presence of these potassic tephra fall deposits among the otherwise prevailing medium-K subalkaline stratigraphy indicates that pulses of K-rich alkaline mafic magmas periodically enter the CVC plumbing system on timescales of a few thousand years and may trigger Plinian explosive eruptions.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...