GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The microstructures in the Erro-Tobbio peridotite indicate several stages of recrystallization of olivine + titanian clinohumite-bearing assemblages. The development of these assemblages is closely associated with serpentinite mylonites, in which they occur in shear bands and foliations and are inferred to have grown synkinematically, in veins, and as post-kinematic radial aggregates. In the peridotite wall-rock adjacent to these mylonites, the same assemblages have recrystallized statically at the expense of original olivine and pyroxenes, mesh-textured chrysolite and antigorite veins. In addition, the olivine-bearing assemblage occurs in widespread vein systems. The brittle deformation of the peridotite resulting in the development of these vein systems is closely related to ductile deformation of metagabbroic dykes in the peridotite. Although early metasomatism resulted in extensive rodingitization of the gabbros, some dykes show an eclogitic assemblage of Na-clinopyroxene + garnet + chloritoid + chlorite ± talc. These observations, the microstructures and the mineral chemistry all suggest that the assemblages in the ultramafic rocks and metagabbros developed during a prograde evolution towards high pressures (〉13–16 kbar, 450–550° C), and during subsequent decompression. This metamorphic evolution is considered to be related to Late Cretaceous intraoceanic subduction in the Alps-Apennine system and closure of the Piedmont-Ligurian basin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The retrograde P-T trajectory of the eclogitic Fe-Ti-gabbros from the Ligurian Alps is constrained by the appearance of mineral parageneses post-dating the Na-clinopyroxene + garnet eclogitic assemblage and indicating the following sequence of metamorphic events: (1) amphibolitic stage— edenite/katophorite + plagioclase (An33–43) + oxides in symplectitic aggregates; (2) glaucophanic stage— a porphyroblastic glaucophanic amphibole has overgrown the symplectite, winchite also occurs as thin rims around glaucophane and both amphiboles are, sometimes, armoured by atoll garnets; (3) albite-amphibolite stage—barroisite/katophorite + albite + epidote + oxides ± chlorite overprint the glaucophanic stage minerals; (4) greenschist stage—represented by actinolite + albite + epidote + oxide paragenesis.The metamorphic evolution is complex and the decompression path, on a P–T diagram, is significantly different from those defined in the literature for the Voltri eclogites. The main features inferred from the P–T path are the following: (1) the pressure climax does not match the thermal climax, the maximum temperature conditions are in fact achieved during the early stage of uplift; (2) a decrease in temperature, suggested by the appearance of glaucophane after the amphibolitic symplectite; (3) successive uplift, probably accompanied by an increase in temperature. The complexity of the P-T path drawn for the Voltri eclogites can be explained with a mechanism of successive underthrusts propagating from the innermost to the outermost sector of the Ligurian Alps.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-09
    Description: At Cima di Gagnone, garnet peridotite and chlorite harzburgite lenses within pelitic schists and gneisses correspond to eclogite-facies breakdown products of hydrated peridotites and are suitable for studying dehydration of serpentinized mantle. Thermobarometry and pseudosection modelling yield peak temperatures of 750–850°C and pressures 〈3 GPa. The minimum temperature recorded by the garnet peridotite corresponds to the maximum conditions experienced by the chlorite harzburgite, suggesting that these rocks recrystallized cofacially at ~800°C. Alternatively, they might have decoupled during subduction, as achieved in tectonically active plate interface boundaries. The major and rare earth element (REE) variability of the peridotites was mostly acquired during pre-subduction mantle evolution as a result of partial melting and reactive melt flow. The ultramafic suite is also characterized by fluid-mobile element enrichments (B, Pb, As, Sb, Cs, Li, U, Be), which confirm derivation from variably serpentinized protoliths. Similarity in the U, Pb, B, Li and Sr contents of the Gagnone peridotites to present-day oceanic serpentinites suggests that these elements were partly taken up during initial serpentinization by seawater-derived fluids. Positive Be, As and Sb anomalies suggest involvement of fluids equilibrated with crustal (metasedimentary) reservoirs during subsequent subduction metamorphism and peridotite entrainment in (meta)sediments. Fluid-mobile element enrichment characterizes all peak eclogitic minerals, implying that multiple hydration events and element influx pre-dated the eclogite-facies dehydration. Peak anhydrous minerals retain B, Li, As and Sb concentrations exceeding primitive mantle values and may introduce geochemical anomalies into the Earth’s mantle. The relatively low contents of large ion lithophile elements and light REE in the Gagnone peridotites with respect to much higher enrichments shown by metasomatized garnet peridotite pods hosted in migmatites (Ulten Zone, Eastern Alps) suggest that the crustal rocks at Gagnone did not experience partial melting. The Gagnone garnet peridotite, despite showing evidence for chlorite dehydration, retains significant amounts of fluid-mobile elements documenting that no partial melting occurred upon chlorite breakdown. We propose that the Gagnone ultramafic rocks represent a prime example of multi-stage peridotite hydration and subsequent dehydration in a plate interface setting.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-01
    Description: Serpentinites formed by alteration of oceanic and forearc mantle are major volatile and fluid-mobile element reservoirs for arc magmatism, though direct proof of their dominance in the subduction-zone volatile cycles has been elusive. Boron isotopes are established markers of fluid-mediated mass transfer during subduction. Altered oceanic crust and sediments have been shown to release in the subarc mantle 11 B-depleted fluids, which cannot explain 11 B enrichment of many arcs. In contrast to these crustal reservoirs, we document high 11 B values retained in subduction-zone Alpine serpentinites. No 11 B fractionation occurs in these rocks with progressive burial: the released 11 B-rich fluids uniquely explain the elevated 11 B of arc magmas. B, O-H, and Sr isotope systems indicate that serpentinization was driven by slab fluids that infiltrated the slab-mantle interface early in the subduction history.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-28
    Description: Subduction zones provide a key link between the surficial biogenic, atmospheric and hydrospheric geochemical cycles with the Earth’s internal reservoirs. Sediment compaction and dehydration of variably altered oceanic lithosphere during subduction release volatile species (containing e.g., S, H, C, N) to the overlying mantle wedge. In particular, sulfur plays a key role in the formation of porphyry ore deposits and has a major control on redox processes in subduction zones, given it occurs in variable oxidation states from oxidized sulfate (S6+) to reduced sulfide (S2-). Here we studied samples from a contact between serpentinite and partly metasomatized eclogitic metagabbros in the Voltri Massif (Italy). We determined the bulk rock and in situ sulfur isotope composition of pyrite grains and combined this with detailed mineralogic and petrologic investigations. Along the serpentinite-metagabbro contact, the metagabbros are metasomatized to actinolite-chlorite schists and metagabbros rich in epidote and Na- and Na-Ca amphiboles. The serpentinites as well as the actinolite-chlorite schists along the serpentinite-metagabbro contact have very low sulfide contents and provide evidence for the oxidation of sulfides, including formation of Fe-oxides. Sulfur input from the serpentinite-metagabbro contact towards the less metasomatized eclogitic metagabbros is observed. This sulfur input is reflected by bulk rock δ34S values that increase from initially around +1.5‰ in samples distant from the contact to +7.3 to +12.5‰ in samples near the contact. This trend correlates with a general increase in the in situ δ34S values from core to rim of individual pyrite grains. Distinct Co and Ni growth zones in pyrite and variations in the in situ δ34S values indicate multiple phases of pyrite growth during subduction and exhumation of these rocks, with the last stage of pyrite growth clearly related to Mg-metasomatism along the serpentinite-metagabbro contact. Thus, this study provides new insight into processes of sulfur migration during metasomatism of gabbroic rocks within the subducting slab and at the slab–mantle interface.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-08-23
    Description: Primitive arc magmas are more oxidized and enriched in sulfur-34 (34S) compared to mid-ocean ridge basalts. These findings have been linked to the addition of slab-derived volatiles, particularly sulfate, to arc magmas. However, the oxidation state of sulfur in slab fluids and the mechanisms of sulfur transfer in the slab remain inconclusive. Juxtaposed serpentinite and eclogitic metagabbro from the Voltri Massif (Italy) provide evidence for sulfur mobilization and associated redox processes during infiltration of fluids. Using bulk rock and in situ δ34S measurements, combined with thermodynamic calculations, we document the transfer of bisulfide-dominated, 34S-enriched fluids in equilibrium with serpentinite into adjacent metagabbro. We argue that the process documented in this study is pervasive along the subduction interface and infer that subsequent melting of these reacted slab-mantle interface rocks could produce melts that display the characteristic oxygen fugacity and sulfur isotope signatures of arc magmas worldwide.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...