GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 31 (1983), S. 484-487 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-23
    Description: [1]  The ACES-High rocket, part of the Auroral Current and Electrodynamics Structure (ACES) mission launched from Poker Flat Research Range on January 29, 2009, obtained the first in situ measurements indicative of both of the observational characteristics associated with the ionospheric feedback instability as it flew through an auroral arc and its associated return current region. ACES-High observed Alfvénic wave structures localized in areas of roughly 10 km near the boundaries of the return current region associated with the discrete auroral arc and increased electron density with a temperature characteristic of a cold ionosphere in the return current region. This density enhancement is believed to be caused by the excavation of plasma from lower altitudes via the ponderomotive force produced by the ionospheric Alfvén resonator, as shown by Streltsov and Lotko (2008). While this density is lower than expected from simulations and other observations by as much as an order of magnitude, the ratio of the enhancement to the background density is in agreement with predictions. The observations made by ACES-High agree with the model results by Streltsov and Lotko (2008), but show the localized wave structures only near the boundariesof the return current region and not throughout it. This can be explained by strong small-scale magnetic field-aligned currents that are generated by the interaction between the large-scale downward current and the ionosphere at these boundaries. Finally, a new model, based on that by Streltsov and Marklund (2006), was run with only one downward current region and produced results very similar to the observations seen by ACES-High.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-13
    Description: Regions of warm, thin, discontinuous permafrost have been observed to be experiencing rapid changes in lake and pond dynamics in recent decades. Even though surface water and groundwater interactions are thought to play a significant role in heat transport in these regions, the effect of these interactions on permafrost remains largely unquantified. In order to examine the influence of groundwater flow on permafrost dynamics, we modeled the development of a sub-lake talik under permafrost conditions similar to those observed in the southern-central Seward Peninsula region of Alaska using a numerical solution that couples heat transport and groundwater flow, including the effect of water phase changes on soil permeability and latent heat content. A comparison of model simulations, with and without near surface subpermafrost groundwater flow, indicates that stable permafrost thicknesses are 2 to 5 times greater in the absence of groundwater flow. Simulations examining the thermal influence of lakes on underlying permafrost suggest that a through-going talik can develop in a matter of decades and that the incorporation of advective heat transport reduces the time to complete loss of ice beneath the lake by half, relative to heat transport by conduction alone. This work presents the first quantitative assessment of the rates of sub-lake permafrost response to thermal disturbances, such as talik development, in systems with near-surface groundwater flow. The results highlight the importance of coupled thermal and hydrologic processes on discontinuous permafrost dynamics.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...