GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-04
    Description: Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-23
    Description: Speleothems are important paleoclimate archives. Researchers typically compile measurements of stable isotopic ratios dated using high precision U-Th radiometric techniques to reconstruct regional and global climate. Magnetic material incorporated within speleothems can provide an independent means of connecting large-scale climatic changes with their impact on more localized processes in soils overlying cave systems. Under certain environmental conditions, pedogenic processes can produce magnetite nanoparticles. Enhancement of pedogenic magnetite in soil profiles depends strongly on local precipitation. Pedogenic magnetite can be subsequently transferred via drip-waters into underlying cave-systems and incorporated into speleothems as they grow. Here, we employ high-resolution magnetic methods to analyze a well-dated stalagmite from Buckeye Creek Cave, West Virginia (USA), and find that changes in magnetite concentration follow both changes in stable isotopes measured in the same stalagmite and global climate proxies. We interpret the changes in magnetite concentration as reflecting variations in local pedogenic processes, controlled by changes in regional precipitation. This record demonstrates how magnetic measurements on speleothems can constrain interpretations of speleothem climate proxies.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...