GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances, 4(12), (2018): eaau5180. doi: 10.1126/sciadv.aau5180.
    Description: Oxygen minimum zones (OMZs), large midwater regions of very low oxygen, are expected to expand as a result of climate change. While oxygen is known to be important in structuring midwater ecosystems, a precise and mechanistic understanding of the effects of oxygen on zooplankton is lacking. Zooplankton are important components of midwater food webs and biogeochemical cycles. Here, we show that, in the eastern tropical North Pacific OMZ, previously undescribed submesoscale oxygen variability has a direct effect on the distribution of many major zooplankton groups. Despite extraordinary hypoxia tolerance, many zooplankton live near their physiological limits and respond to slight (≤1%) changes in oxygen. Ocean oxygen loss (deoxygenation) may, thus, elicit major unanticipated changes to midwater ecosystem structure and function.
    Description: We thank the captain and crew of the R/V Sikuliaq (University of Alaska) and Scripps Institution of Oceanography for additional technical services. Thanks also to D. Ullman and D. Casagrande for Wire Flyer assistance; C. Matson and J. Calderwood for MOCNESS upgrades; S. Gordon (professional photographer, Open Boat Films LLC) for the photographs and movies; and A. Dymowska, J. Ivory, Y. Jin, J. McGreal, and N. Redmond for help at sea. Funding: Funding was provided by the NSF grants OCE1459243 (to K.F.W., C.R., and B.A.S.), OCE1458967 (to C.D.), DGE1244657 (to M.A.B.), and OCE1460819 (URI REU SURFO program to S.R.) plus funding from our respective institutions. Author contributions: K.F.W., B.A.S., C.R., and C.D. conceived the project. K.F.W. led the writing effort, with substantial contributions from all the authors. K.F.W. directed the MOCNESS component including zooplankton abundance and biomass quantification. B.A.S. directed the metabolic experiments and Tucker trawls. C.R. directed the Wire Flyer work. B.A.S., C.D., K.A.S.M., and M.A.B. developed the MI models. D.O., C.T.S., D.M., and S.R. processed and analyzed the zooplankton data. T.J.A. processed the MOCNESS hydrographic data. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Extensive files of continuous hydrographic data from transects are available from C.R. (Wire Flyer) and K.F.W. (MOCNESS). Additional data related to this paper may be requested from the authors.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  Journal of Field Robotics, 24 (1-2). pp. 23-50.
    Publication Date: 2017-08-10
    Description: The achievable accuracy of bathymetric mapping in the deep ocean using robotic systems is most often limited by the available guidance or navigation information used to combine the measured sonar ranges during the map making process. This paper presents an algorithm designed to mitigate the affects of poor ground referenced navigation by applying the principles of map registration and pose filtering commonly used in simultaneous localization and mapping (SLAM) algorithms. The goal of the algorithm is to produce a self-consistent point cloud representation of the bottom terrain with errors that are on a scale similar to the sonar range resolution rather than any direct positioning measurement. The presented algorithm operates causally and utilizes sensor data that are common to instrumented underwater robotic vehicles used for mapping and scientific explorations. Real world results are shown for data taken on several expeditions with the JASON remotely operated vehicle (ROV). Comparisons are made between more standard mapping approaches and the proposed method is shown to significantly improve the map quality and reveal scene information that would have otherwise been obscured due to poor direct navigation information.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...