GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Besides other mechanisms, the influx of Ca2+ into embryonic neurons controls growth and differentiation processes. To study the expression and regulation of voltage-gated Ca2+ channels during early neurogenesis, we measured whole-cell Ca2+ currents (Ica) in neurons developing from pluripotent embryonic stem cells. Various receptor agonists, including somatostatin and baclofen, reversibly inhibited ICa in embryonic stem cell-derived neurons. The effects of somatostatin and baclofen were abolished by pretreatment of cells with pertussis toxin and mimicked by intracellular infusion of guanosine 5′-O-(3-thiotriphosphate), suggesting the involvement of pertussis toxin-sensitive G proteins in Ica inhibition. Investigations at different stages of neuronal differentiation showed that somatostatin efficiently suppressed L- and N-type Ca2+ channels in immature as well as mature neurons. In contrast, inhibition of L- and N-type channels by baclofen was rarely observed at the early stage. In terminally differentiated neurons, responses to baclofen were as prominent as those to somatostatin but were confined to N-type Ca2+ channels. The stage-dependent sensitivity of voltage-gated Ca2+ channels to somatostatin and baclofen was not due to differential expression of Gαo isoforms, as revealed by reverse transcription-polymerase chain reaction and immunofluorescence microscopy. These findings demonstrate that specific neurotransmitters such as somatostatin regulate voltage-gated Ca2+ channels via G proteins during the early stages of neurogenesis, thus providing a mechanism for the epigenetic control of neuronal differentiation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Mouse embryonic stem cells ; Differentiation ; Cardiomyocytes ; Skeletal muscle cells ; Retinoic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pluripotent embryonic stem cells (ES cells) differentiating via embryo-like aggregates (embryoid bodies) into derivatives of the primary germ layers were used as a model system to investigate the time- and concentration dependent effects of retinoic acid (RA) on the in vitro differentiation pattern. When ES cells, cultivated normally under conditions resulting in cardiomyocyte differentiation, were treated during the first 2 days of embryoid body formation with high RA concentrations (10−9 to 10−7 M) a strong inhibition of cardiogenesis was found. ES cells differentiating as embryoid bodies and treated with the same RA concentration between the 5th and 7th day resulted in a slight induction of cardiogenesis. In contrast, incubation of embryoid bodies with 10−8 and 10−7 M RA between the 2nd and 5th day of embryoid body development resulted in a total inhibition of cardiogenesis but in an induction of myogenesis. This was demonstrated by indirect immunofluorescence and, as shown by reverse transcription- polymerase chain reaction (RT-PCR), by the time- and concentration-dependent inhibition of transcription of cardiac-specific α- and β-cardiac myosin heavy chain (MHC) genes, and the induction of transcription of skeletal muscle-specific myogenin. In addition, using the whole-cell patch-clamp technique, these skeletal myocytes were functionally characterized by the expression of tissue-specific Ca2+ channels and nicotinic cholinoceptors. In summary, a specific effect of RA on ES cell differentiation in the embryoid body resulting in a switch from cardiogenesis to myogenesis and an induction of neuronal cells was found.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-041X
    Keywords: Mouse embryonic stem cells ; Differentiation ; Cardiomyocytes ; Skeletal muscle cells ; Retinoic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pluripotent embryonic stem cells (ES cells) differentiating via embryo-like aggregates (embryoid bodies) into derivatives of the primary germ layers were used as a model system to investigate the time- and concentration dependent effects of retinoic acid (RA) on the in vitro differentiation pattern. When ES cells, cultivated normally under conditions resulting in cardiomyocyte differentiation, were treated during the first 2 days of embryoid body formation with high RA concentrations (10−9 to 10−7 M) a strong inhibition of cardiogenesis was found. ES cells differentiating as embryoid bodies and treated with the same RA concentration between the 5th and 7th day resulted in a slight induction of cardiogenesis. In contrast, incubation of embryoid bodies with 10−8 and 10−7 M RA between the 2nd and 5th day of embryoid body development resulted in a total inhibition of cardiogenesis but in an induction of myogenesis. This was demonstrated by indirect immunofluorescence and, as shown by reverse transcription- polymerase chain reaction (RT-PCR), by the time- and concentration-dependent inhibition of transcription of cardiac-specific α- andβ-cardiac myosin heavy chain (MHC) genes, and the induction of transcription of skeletal muscle-specificmyogenin. In addition, using the whole-cell patch-clamp technique, these skeletal myocytes were functionally characterized by the expression of tissue-specific Ca2+ channels and nicotinic cholinoceptors. In summary, a specific effect of RA on ES cell differentiation in the embryoid body resulting in a switch from cardiogenesis to myogenesis and an induction of neuronal cells was found.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1058-8388
    Keywords: M-cadherin antibodies ; N-CAM ; Desmin ; Laminin ; Somite ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecules regulating morphogenesis by cell-cell interactions are the cadherins, a class of calcium-dependent adhesion molecules. One of its members, M-cadherin, has been isolated from a myoblast cell line (Donalies et al. [1991] Proc. Natl. Acad. Sci. U.S.A. 88:8024 - 8028). In mouse development, expression of M-cadherin mRNA first appears at day 8.5 of gestation (E8.5) in somites and has been postulated to be down-regulated in developing muscle masses (Moore and Walsh [1993] Development 117:1409 - 1420). Affinity-purified polyclonal M-cadherin antibodies, detecting a protein of approximately 120 kDa, were used to study the cell expression pattern of M-cadherin protein. It was first visualized in somites at E10 1/3 and could be confined to desmin positive, myotomal cells. At all subsequent prenatal stages, M-cadherin was only found in myogenic cells of somitic origin. The detection of the protein at E10 1/3 suggests a translational delay of M-cadherin mRNA of 1 to 2 days (E8.5 vs. E10 1/3). This was further supported by the finding that during differentiation of ES cell line BLC6 into skeletal muscle cells in culture, expression of M-cadherin mRNA can be detected 2 days prior to M-cadherin protein. During prenatal development, the pattern of M-cadherin expression changes: In E10 1/3 embryos and also in myotomal cells of later stages, M-cadherin is evenly distributed on the cell surface. In developing muscle masses (tested at E16 to E18), however, M-cadherin protein becomes clustered most likely at sites of cell-cell contact as indicated by double-labelling experiments: M-cadherin-staining is the positive image of laminin negative areas excluding the presence of a basal lamina at M-cadherin positive sites. Furthermore, M-cadherin is coexpressed with the neuronal cell adhesion molecule N-CAM which has been shown to mediate cell-cell contact in myogenic cells. In summary, our results are in line with the idea that M-cadherin might play a central role in myogenic morphogenesis. © 1994 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0778
    Keywords: cardiogenesis ; cell differentiation ; gene expression ; mouse embryonic stem cells ; myogenesis ; neurogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Embryonic stem cells, totipotent cells of the early mouse embryo, were established as permanent cell lines of undifferentiated cells. ES cells provide an important cellular system in developmental biology for the manipulation of preselected genes in mice by using the gene targeting technology. Embryonic stem cells, when cultivated as embryo-like aggregates, so-called ‘embryoid bodies’, are able to differentiate in vitro into derivatives of all three primary germ layers, the endoderm, ectoderm and mesoderm. We established differentiation protocols for the in vitro development of undifferentiated embryonic stem cells into differentiated cardiomyocytes, skeletal muscle, neuronal, epithelial and vascular smooth muscle cells. During differentiation, tissue-specific genes, proteins, ion channels, receptors and action potentials were expressed in a developmentally controlled pattern. This pattern closely recapitulates the developmental pattern during embryogenesis in the living organism. In vitro, the controlled developmental pattern was found to be influenced by differentiation and growth factor molecules or by xenobiotics. Furthermore, the differentiation system has been used for genetic analyses by ‘gain of function’ and ‘loss of function’ approaches in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...