GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 0021-9541
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: We have shown earlier that mechanical stimulation by intermittent hydrostatic compression (IHC) inhibits bone resorption and stimulates bone formation in cultured fetal mouse calvariae (Klein-Nulend et al., 1986, Arthritis Rheum., 29:1002-1009). The production of soluble bone factors by such calvariae is also modified (Klein-Nulend et al., 1993, Cell Tissue Res., 271:513-517). Transforming growth factor-β (TGF-β) is an important local regulator of bone metabolism and is produced by osteoblasts. In this study, the release of TGF-β activity as a result of mechanical stress was examined in organ cultures of neonatal mouse calvariae, in primary cultures of calvariae-derived osteoprogenitor (OPR) cells, and in more differentiated osteoblastic (OB) cells. Whole calvariae and calvariaederived cells were cultured in the presence or absence of IHC for 1-7 days and medium concentrations of active as well as total TGF-β were measured using a bioassay. IHC (maximum 13 kPa, maximal pressure rate 32.5 kPa/sec) was generated by intermittently (0.3 Hz) compressing the gas phase above the cultures. We found that mechanical loading by IHC stimulated the release of TGF-β activity from cultured calvariae by twofold after 1 day. IHC also stimulated the release of TGF-β activity from calvariae-derived cells after 1 and 3 days. The absolute amounts of TGF-β activity released were lower in OPR cells than in OB cells, but the stimulatory effect of IHC was greater in OPR cells. Total TGF-β (active and bound) released into the medium was not affected by IHC. IHC did not change the dry weight of the organ cultures, nor the DNA or protein content of the cell cultures. These data show that mechanical perturbation of bone cells, particularly OPR cells, enhances the activation of released TGF-β. We conclude that modulation of TGF-β metabolism may be part of the response of bone tissue to mechanical stress. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...