GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Quaternary international, Oxford [u.a.] : Pergamon Press, 1989, 138(2005), Seite 1-4, 1040-6182
    In: volume:138
    In: year:2005
    In: pages:1-4
    Type of Medium: Article
    ISSN: 1040-6182
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Quaternary international, Oxford [u.a.] : Pergamon Press, 1989, 138(2005), Seite 145-167, 1040-6182
    In: volume:138
    In: year:2005
    In: pages:145-167
    Type of Medium: Article
    ISSN: 1040-6182
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-30
    Description: Discerning the timing and pattern of late Quaternary glacier variability in the tropical Andes is important for our understanding of global climate change. Terrestrial cosmogenic nuclide (TCN) ages (48) on moraines and radiocarbon-dated clastic sediment records from a moraine-dammed lake at Nevado Huaguruncho, Peru, document the waxing and waning of alpine glaciers in the Eastern Cordillera during the past ~15 k.y. The integrated moraine and lake records indicate that ice advanced at 14.1 ± 0.4 ka, during the first half of the Antarctic Cold Reversal, and began retreating by 13.7 ± 0.4 ka. Ice retreated and paraglacial sedimentation declined until ca. 12 ka, when proxy indicators of glacigenic sediment increased sharply, heralding an ice advance that culminated in multiple moraine positions from 11.6 ± 0.2 ka to 10.3 ± 0.2 ka. Proxy indicators of glacigenic sediment input suggest oscillating ice extents from ca. 10 to 4 ka, and somewhat more extensive ice cover from 4 to 2 ka, followed by ice retreat. The lack of TCN ages from these intervals suggests that glaciers were less extensive than during the late Holocene. A final Holocene advance occurred during the Little Ice Age (LIA, ca. 0.4 to 0.2 ka) under colder and wetter conditions as documented in regional proxy archives. The pattern of glacier variability at Huaguruncho during the Late Glacial and Holocene is similar to the pattern of tropical Atlantic sea-surface temperatures, and provides evidence that prior to the LIA, ice extent in the eastern tropical Andes was decoupled from temperatures in the high-latitude North Atlantic.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-25
    Description: Decadal and centennial mean state changes in South American summer monsoon (SASM) precipitation during the last 2,300 years are detailed using an annually resolved authigenic calcite record of precipitation δ18O from a varved lake in the Central Peruvian Andes. This unique sediment record shows that δ18O peaked during the Medieval Climate Anomaly (MCA) from A.D. 900 to 1100, providing evidence that the SASM weakened considerably during this period. Minimum δ18O values occurred during the Little Ice Age (LIA) between A.D. 1400 and 1820, reflecting a prolonged intensification of the SASM that was regionally synchronous. After the LIA, δ18O increased rapidly, particularly during the current warm period (CWP; A.D. 1900 to present), indicating a return to reduced SASM precipitation that was more abrupt and sustained than the onset of the MCA. Diminished SASM precipitation during the MCA and CWP tracks reconstructed Northern Hemisphere and North Atlantic warming and a northward displacement of the Intertropical Convergence Zone (ITCZ) over the Atlantic, and likely the Pacific. Intensified SASM precipitation during the LIA follows reconstructed Northern Hemisphere and North Atlantic cooling, El Niño-like warming in the Pacific, and a southward displacement of the ITCZ over both oceans. These results suggest that SASM mean state changes are sensitive to ITCZ variability as mediated by Western Hemisphere tropical sea surface temperatures, particularly in the Atlantic. Continued Northern Hemisphere and North Atlantic warming may therefore help perpetuate the recent reductions in SASM precipitation that characterize the last 100 years, which would negatively impact Andean water resources.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-10
    Description: Sediment records from deep-drilling projects such as those carried out by the International Continental Scientific Drilling Program are often tens to hundreds of meters in length. To ensure the complete recovery of a stratigraphic section, a basin is usually cored multiple times in adjacent holes so that gaps between sequential cores, poorly recovered sections, or intervals affected by disturbance can be bridged or replaced with sediments from another hole. Stratigraphic correlation, the alignment of stratigraphically-equivalent horizons in cores from different holes in a common-depth scale, and splice generation, the integration of the most-representative core sections into a composite-stratigraphic section, are essential steps in this process to both evaluate and synthesize the recovered-sediment record and focus the scientific analyses. However, these undertakings can be complex and are inherently subjective, making the need for the development of a single robust stratigraphic section early in the project critical to its success. Despite this, the steps between core recovery and on-splice data generation are rarely published in sufficient detail to allow reconstruction, or refinement, of the composited record at a later date. To increase the transparency of how the composite record is created, and to provide a template for future projects, we detail the step-by-step approaches and decisions involved in generating the composite-depth scale and complete-stratigraphic splice following recovery of sediments from Lake Junín, Peru. We first explain the details and nuances of different drilling-depth scales before describing how we integrated different physical property records to generate the composite-depth scale and complete-stratigraphic splice. Here, we show that due to the complex stratigraphy in the Lake Junín sediments, high-resolution line-scan images of the cores offer millimeter-scale precision for construction of the primary-stratigraphic splice at a resolution not afforded by other physical property data. Finally, through comparison of the spliced record to physical-property records acquired in situ on the borehole, we demonstrate that the stratigraphic splice is an accurate representation of the sediment accumulated in the Lake Junín basin.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-30
    Description: Our understanding of the climatic teleconnections that drove ice-age cycles has been limited by a paucity of well-dated tropical records of glaciation that span several glacial–interglacial intervals. Glacial deposits offer discrete snapshots of glacier extent but cannot provide the continuous records required for detailed interhemispheric comparisons. By contrast, lakes located within glaciated catchments can provide continuous archives of upstream glacial activity, but few such records extend beyond the last glacial cycle. Here a piston core from Lake Junín in the uppermost Amazon basin provides the first, to our knowledge, continuous, independently dated archive of tropical glaciation spanning 700,000 years. We find that tropical glaciers tracked changes in global ice volume and followed a clear approximately 100,000-year periodicity. An enhancement in the extent of tropical Andean glaciers relative to global ice volume occurred between 200,000 and 400,000 years ago, during sustained intervals of regionally elevated hydrologic balance that modified the regular approximately 23,000-year pacing of monsoon-driven precipitation. Millennial-scale variations in the extent of tropical Andean glaciers during the last glacial cycle were driven by variations in regional monsoon strength that were linked to temperature perturbations in Greenland ice cores1; these interhemispheric connections may have existed during previous glacial cycles.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...