GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Relativistic fluid dynamics. ; Relativistic fluid dynamics-Mathematical models. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (306 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030820770
    Serie: Lecture Notes in Physics Series ; v.990
    DDC: 532.05
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- References -- Contents -- About the Authors -- 1 Relativistic Fluid Dynamics -- 1.1 Thermodynamics -- 1.2 Relativistic Ideal Fluid Dynamics -- 1.2.1 Conserved Currents in an Ideal Fluid -- 1.2.2 Equations of Motion -- 1.2.3 Covariant Thermodynamics and Entropy Production -- 1.3 Relativistic Dissipative Fluid Dynamics -- 1.3.1 Matching Conditions -- 1.3.2 Tensor Decomposition of τµν -- 1.3.3 Definition of the Local Rest Frame and Equations of Motion -- 1.3.4 Relativistic Navier-Stokes Theory -- 1.3.5 Gradient Expansion and Navier-Stokes Theory -- 1.4 Causal Fluid Dynamics -- 1.4.1 Diffusion Equation and Acausality in Heat Conduction -- 1.4.2 Transient Theory of Fluid Dynamics -- 1.5 Transient Thermodynamics and Israel-Stewart Theory -- 1.6 Non-hydrodynamic Modes and the Origin of the Relaxation Time -- 2 Linear Stability and Causality -- 2.1 Fluid-Dynamical Equations Linearized Around Global Equilibrium -- 2.2 Linearized Fluid-Dynamical Equations in Fourier Space -- 2.2.1 Tensor Decomposition in Fourier Space -- 2.2.2 Longitudinal and Transverse Components -- 2.3 Ideal Fluid Dynamics -- 2.4 Relativistic Navier-Stokes Theory -- 2.4.1 Transverse Modes -- 2.4.2 Longitudinal Modes -- 2.4.3 Causality and Stability of Navier-Stokes Theory -- 2.5 Transient Theory of Fluid Dynamics -- 2.5.1 Transverse Modes in the Rest Frame -- 2.5.2 Longitudinal Modes in the Rest Frame -- 2.5.3 Stability for a Moving Background -- 2.5.4 Causality of Wave Propagation -- 2.6 Summary -- 3 Analytical Solutions and Transient Dynamics -- 3.1 Fluid Dynamics in a General Metric System -- 3.2 Bjorken Flow -- 3.2.1 Coordinates and Kinematic Properties -- 3.2.2 Fluid-Dynamical Equations -- 3.2.3 Ideal-Fluid Limit -- 3.2.4 Relativistic Navier-Stokes Theory -- 3.2.5 Transient Theory of Fluid Dynamics -- 3.2.6 Gradient Expansion of Transient Fluid Dynamics. , 3.3 Gubser Flow -- 3.3.1 Coordinates and Kinematical Properties -- 3.3.2 Fluid-Dynamical Equations of Motion -- 3.3.3 Ideal-Fluid Limit -- 3.3.4 Relativistic Navier-Stokes Theory -- 3.3.5 Transient Theory of Fluid Dynamics -- 3.3.6 Gradient Expansion of Transient Fluid Dynamics -- 3.3.7 Divergence of the Gradient Expansion -- 3.3.8 Domain of Applicability of the Gradient Expansion -- 3.3.9 Slow-Roll Expansion -- 3.3.10 Divergence of the Slow-Roll Series -- 3.3.11 Attractor Solution -- 3.4 Summary -- 4 Microscopic Origin of Transport Coefficients: Linear-Response Theory -- 4.1 Preliminaries -- 4.2 Equivalence Between Gradient Expansion and Taylor Series -- 4.3 The Role of the Analytical Structure of tildeGR(ω) -- 4.3.1 tildeGR(ω) with One Pole -- 4.3.2 tildeGR(ω) with Two Poles -- 4.3.3 tildeGR(Q) with N Poles -- 4.4 Applications -- 4.4.1 The Linearized Boltzmann Equation -- 4.4.2 Linear-Response Theory and Metric Perturbations -- 4.5 Discussion -- 4.6 Summary -- 5 Fluid Dynamics from Kinetic Theory: Traditional Approaches -- 5.1 Matching Fluid-Dynamical with Kinetic Degrees of Freedom -- 5.1.1 Macroscopic Conservation Laws -- 5.1.2 Fluid-Dynamical Variables and Matching Conditions -- 5.2 Chapman-Enskog Theory -- 5.2.1 Solving the Chapman-Enskog Expansion: Zeroth- and First-Order Solutions -- 5.2.2 Minimal Truncation Scheme -- 5.3 Israel-Stewart Theory -- 5.3.1 14-Moment Approximation -- 5.3.2 Matching Procedure -- 5.3.3 Moment Equations -- 5.3.4 Calculation of the Collision Integrals -- 5.3.5 Hydrodynamic Equations of Motion -- 5.4 Summary -- 6 Method of Moments: Equilibrium Reference State -- 6.1 Moment Expansion -- 6.2 Equations of Motion for the Irreducible Moments -- 6.3 Generalized Collision Term -- 6.3.1 Computation of the Linear Collision Term -- 6.3.2 Computation of the Nonlinear Collision Term -- 6.4 Summary. , 6.5 Appendix 1: Irreducible Projection Operators -- 6.6 Appendix 2: Thermodynamic Integrals and Properties -- 6.7 Appendix 3: Orthogonality of the Irreducible Tensors -- 6.8 Appendix 4: Orthogonal Polynomials -- 7 Method of Moments: Convergence Properties -- 7.1 Boltzmann Equation and Fluid-Dynamical Variables -- 7.2 Bjorken Flow -- 7.2.1 Method of Moments -- 7.2.2 Moment Equations -- 7.2.3 Results -- 7.3 Gubser Flow -- 7.3.1 Method of Moments -- 7.4 Summary -- 8 Fluid Dynamics from the Method of Moments -- 8.1 Power Counting -- 8.2 Resummed Transient Relativistic Fluid Dynamics -- 8.3 Resummed Transient Relativistic Fluid Dynamics: 14 Dynamical Variables -- 8.4 Transport Coefficients -- 8.4.1 14-Moment Approximation -- 8.4.2 23-Moment Approximation and Beyond -- 8.5 Discussion: Navier-Stokes Limit and Causality -- 8.6 Resummed Transient Relativistic Fluid Dynamics: 23 Dynamical Variables -- 8.7 Comparisons with Microscopic Theory -- 8.7.1 Stationary Shock Solutions -- 8.8 Summary -- 8.9 Appendix 1: Transport Coefficients in Eq. (8.44) -- 8.10 Appendix 2: Calculation of the Collision Integrals -- 8.10.1 Particle-Diffusion Current -- 8.10.2 Shear-Stress Tensor -- 8.11 Appendix 3: Calculation of γ1(2) -- 8.11.1 14-Moment Approximation -- 8.11.2 23-Moment Approximation -- 8.12 Appendix 4: Transport Coefficients in Sect. 8.6 -- 9 Method of Moments: Anisotropic Reference State -- 9.1 Fluid-Dynamical Variables -- 9.2 Anisotropic State -- 9.3 Expansion Around the Anisotropic Distribution Function -- 9.4 Equations of Motion for the Irreducible Moments -- 9.5 Collision Integrals -- 9.6 Summary -- 9.7 Appendix 1: Irreducible Projection Operators -- 9.8 Appendix 2: Generalized Thermodynamic Integrals -- 9.9 Appendix 3: Generalized Thermodynamic Integrals in the Equilibrium Limit -- 9.10 Appendix 4: Orthogonality of the Irreducible Tensors. , 9.11 Appendix 5: Orthogonal Polynomials.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Forschungsbericht ; Schwerionenstoß ; Hydrodynamisches Modell
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (10 Seiten, 144,90 KB)
    Sprache: Englisch
    Anmerkung: Förderkennzeichen BMBF 05P12RFFTK , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Text englisch , Zusammenfassung in deutscher Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Schlagwort(e): Forschungsbericht
    Materialart: Online-Ressource
    Seiten: Online-Ressource (PDF-Datei: 12 S., 229 KB)
    Sprache: Deutsch
    Anmerkung: Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Förderkennzeichen BMBF 05P09RFCTK , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    The European physical journal 56 (1992), S. 325-337 
    ISSN: 1434-6052
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We investigate a phenomenological equation of state for the gluon plasma, which differs from the ideal gluon gas equation of state in three aspects: (a) it is assumed that gluons withlow momentum are subject to confining interactions anddo not contribute to the energy spectrum of free gluons; (b)only gluons withhigh momentum are considered as an ideal gas with perturbative corrections of orderO(αs); (c) a non-perturbative vacuum pressure is included. We show that feature (a) allows for a reasonable perturbative treatment of the interaction between gluons with high momentum. The equation of state reproduces lattice data for the thermodynamical functions of theSU(3) pure gauge theory above the deconfinement transition temperatureT c. This result suggests that a possible way to describe the gluon plasma is in terms of perturbatively interacting gluons and non-perturbative “glueball” states.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...